+高级检索
神经网络在制备氮化硅多孔陶瓷中的应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

武器装备预研基金(9140C5602040805); 新世纪优秀人才支持计划(NECT-05-0838); “973”项目(2006CB601201)


Artificial Neural Network Modeling and Analysis of Preparation of Porous Si3N4 Ceramics
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以凝胶注模法制备多孔氮化硅陶瓷正交试验结果作为样本,建立3层Back Propagation(BP)神经网络,并进行训练以预测陶瓷性能。通过附加试验值对建立的神经网络预测能力进行验证,证明该BP神经网络模型是有效的,能准确预测多孔氮化硅陶瓷性能。通过BP神经网络模型研究多孔氮化硅陶瓷性能的结果表明,随着固含量的增加,气孔率单调下降;固含量存在一优化值,此时陶瓷抗弯强度最大;单体含量越大,气孔率越大,而抗弯强度降低。

    Abstract:

    Based on orthogonal experimental results of porous Si3N4 ceramics by gel casting preparation, a three-layer back propagation (BP) artificial neural network (BP ANN) was developed for prediction of the flexural strength and porosity. The BP ANN is composed of three neurons in the input layer, two neurons in the output layer and six neurons the hidden layer. This study demonstrates that the proposed neural network approach can predict the performances of porous Si3N4 ceramics by gel casting preparation to a high degree of accuracy, and the neural network is a very useful and accurate tool for performances analysis of porous Si3N4 ceramics. By the proposed neural network prediction and analysis, the results suggest that the porosity monotonically decreases with the increase of solid loading, flexural strength is low when solid loading was too low or too high, and flexural strength has an optimum value.

    参考文献
    相似文献
    引证文献
引用本文

余娟丽,王红洁,张 健,严友兰,乔冠军,金志浩.神经网络在制备氮化硅多孔陶瓷中的应用[J].稀有金属材料与工程,2010,39(3):464~468.[Yu Juanli, Wang Hongjie, Zhang Jian, Yan Youlan, Qiao Guanjun, Jin Zhihao. Artificial Neural Network Modeling and Analysis of Preparation of Porous Si3N4 Ceramics[J]. Rare Metal Materials and Engineering,2010,39(3):464~468.]
DOI:[doi]

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-04-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期: