+高级检索
粉末冶金超细晶医用Ti-Mo-Fe合金的制备与表征
作者:
作者单位:

北京科技大学新材料技术研究院,北京科技大学新材料技术研究院,北京科技大学材料科学与工程学院,北京科技大学材料科学与工程学院,北京科技大学新材料技术研究院,北京科技大学新材料技术研究院

基金项目:

国家自然科学基金资助(项目号51204015);新金属材料国家重点实验室开放基金资助(项目号2012Z-10)


Fabrication and characteristion of PM Ultrafaine grainde Ti-Mo-Fe alloys for biomedical application
Author:
Affiliation:

Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Institute for Advanced Materials and Technology,University of Science and Technology Beijing,School of Material Science and Engineering,University of Science and Technology Beijing,School of Material Science and Engineering,University of Science and Technology Beijing,Institute for Advanced Materials and Technology,University of Science and Technology Beijing,Institute for Advanced Materials and Technology,University of Science and Technology Beijing

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    以元素粉末为原料,采用机械合金化方法结合放电等离子烧结工艺制备了Ti-Mo-(0~9)Fe合金材料,并对其制备过程及性能进行了表征和分析。结果表明,当铁含量为3~9wt%时,球磨10h粉体经900℃烧结可获得高致密度、并具有超细晶结构的钛合金材料,其显微组织主要由β-Ti相基体及FCC-Ti颗粒组成,其晶粒尺寸约为130~490nm,这是在钛合金块体材料中首次制备出FCC结构Ti相。在机械合金化过程中,Fe元素的加入可显著提高合金体系的非晶形成能力,并随Fe含量增加体系非晶形成能力增强,粉末非晶相比例增加,经10h高能球磨后,即可合成具有良好的热稳定性的非晶/纳米晶Ti-Mo-Fe复合粉末。

    Abstract:

    Ti-Mo-(0~9) Fe alloys were processed by mechanical alloying and subsequent spark plasma sintering (SPS) from elemental powders, and the influences of preparation parameters on the performance of milled powders and sintered alloys were studied. The results show that at the Fe content range of 3~9wt.% titanium based alloys with high density and ultra-fine grain structure can be produced by SPS at 900℃ from the powders milled for 10h. The microstructure of the titanium alloys mainly consists of β-Ti phase matrix and FCC-Ti particles, and the average grain size is in the range of 130~490nm. It is the first time that titanium based alloys with face-centered cubic structure are produced. During mechanical alloying process, the addition of Fe element greatly improves the glass forming ability of the alloy system, and the ability and the volume fraction of amorphous phase in the powders are obviously enhanced as increasing Fe content. After high-energy ball-milling for 10h, amorphous/nanocrystalline Ti-Mo-Fe composite powders are found to exhibit favorable thermostability.

    参考文献
    [1] 李元元,邹黎明,杨超. 粉末冶金法合成高强低模超细晶医用钛合金[J]. 华南理工大学学报(自然科学版),2012, 40(10): 43-50.
    [2] C.Edward, K.Bogumi?a, K.Tomasz, et al. Microstructure andmechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting[J]. Materials Characterization, 2011, 62(5): 488-495.
    [3] M. Geetha, A.K. Singh, R. Asokamani, et al. the ultimate choice for orthopaedic implants-A review[J]. Progress in Materials Science , 2009, 54(3): 397-425.
    [4] 梁丹丹,王德志,王小鹰,董小嘉,洪海峡. 医用Ti-Mo合金的制备及性能分析[J]. 稀有金属材料与工程, 2013,42(12): 2607-2612.
    [5] Y. Bao, M. Zhang, Y. Liu, et al. High strength, low modulus and biocompatible porous Ti-Mo-Fe alloys [J]. Journal of Porous Materials, 2014, 21: 913-919.
    [6] K. Sengo, M. Akira, O. Satoshi, et al. Effect of Fe addition on the microstructure formation and mechanical properties of Ti-2.0, 3.0at%Mo alloys [J]. Advanced Materials Research, 2014, 783: 1280-1285.
    [7] 汤慧萍, 刘海彦, 黄原平, 等. Mo对P/M Ti-Mo合金烧结致密化和力学性能的影响[J]. 稀有金属材料与工程, 2006(12): 1932-1935.
    [8] F.F. Cardoso, L.P. Ferrandini, S.N.E. Lopes, et al. Ti-Mo alloys employed as biomaterials: Effects of composition and aging heat treatment on microstructure and mechanical behavior [J]. Journal of theMechanical Behavior of Biomedical Materials, 2014, 32: 31-38.
    [9] C.M. Tab?rca, D.M. Gordin, V. Mitran, et al. Recrystallization temperature influence upon structural changes of 90% cold rolled Ti-29Nb-9Ta-10Zr biocompatible alloy [J]. Materials Science and Engineering C, 2015,47: 105-113.
    [10] H.C. Kou, M.J. Lai, B. Tang, et al. Aging response and properties of Ti-7333 titanium alloy[C]. Ti 2011 - Proceedings of the 12th World Conference on Titanium [C],2012,3: 1206-1208.
    [11] P. La, J. Ma, Y.T. Zhu, et al. Dry-sliding tribological properties of ultrafine-grained Ti prepared by severe plastic deformation[J]. Acta Materialia, 2005, 53(19): 5167-5173.
    [12] D. Khang, J. Lu, C. Yao, et al. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium [J]. Biomaterials , 2008, 29(8): 970-983.
    [13] T.J. Webster, J.U. Ejiofor. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo [J]. Biomaterials , 2004, 25(19): 4731-4739.
    [14] L.M. Zhou, Y.H. Li, C. Yang. Effect of Fe content on glass-forming ability and crystallization behavior of a (Ti69.7Nb23.7Zr4.9Ta1.7)100-x-Fex alloy synthesized by mechanical alloying [J]. Journal of Alloys and Compounds, 2013, 553: 40-47.
    [15] D. Turnbull. Under what conditions can a glass be formed [J]. Contemporary Physics, 1969, 10(5): 473-488.
    [16] F.E.J. Wawner, K.R.J. Lawless. Epitaxial growth of titanium thin films [J]. Journal of Vacuum Science Technology, 1969, 6: 588-590.
    [17]M..J. Phasha,A.S.Bolokang, P.E.Ngoep.Solid-state transformation in nanocrystalline Ti induced by ball milling[J]. Materials Letters, 2010, 64: 1215-1218.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐伟,路新,夏青,韩刚,王涛,曲选辉.粉末冶金超细晶医用Ti-Mo-Fe合金的制备与表征[J].稀有金属材料与工程,2017,46(5):1393~1398.[Xu Wei, Lu Xin, Xia Qing, Han Gang, Wang Tao, Qu Xuanhui. Fabrication and characteristion of PM Ultrafaine grainde Ti-Mo-Fe alloys for biomedical application[J]. Rare Metal Materials and Engineering,2017,46(5):1393~1398.]
DOI:[doi]

复制
文章指标
  • 点击次数:1344
  • 下载次数: 1187
  • HTML阅读次数: 159
  • 引用次数: 0
历史
  • 收稿日期:2015-01-23
  • 最后修改日期:2015-07-29
  • 录用日期:2015-09-07
  • 在线发布日期: 2017-09-27