+高级检索
凝胶注模制备多孔Ni-Ti合金的研究
作者:
作者单位:

中南大学 材料科学与工程学院;中南大学 有色金属材料科学与工程教育部重点实验室;中南大学 粉末冶金国家重点实验室,中南大学 材料科学与工程学院,中南大学 材料科学与工程学院,中南大学 材料科学与工程学院

基金项目:

湖南省自然科学(2015JJ2170);国家自然科学基金资助项目(51274246);中南大学粉末冶金国家重点实验室开放课题基金资助项目(10500-410500023)


Porous Ni-Ti alloy prepared by gel-casting
Author:
Affiliation:

School of Materials Science and Engineering,Central South University;ChinaKey Laboratory of Ministry of Education for Non-ferrous Metal Materials Science and Engineering;China;State Key Laboratory of Powder Metallurgy,Central South University;China,School of Materials Science and Engineering,Central South University,School of Materials Science and Engineering,Central South University,School of Materials Science and Engineering,Central South University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    多孔Ni-Ti合金由于其优异的形状记忆性能而广泛应用于医用植入材料领域。本文以TiH2粉及雾化Ni粉为原料,采用凝胶注模成型技术,制备出Ni-Ti凝胶生坯,通过后续真空干燥、脱脂以及烧结工艺成功制备出性能优异的医用植入多孔Ni-Ti合金。运用XRD、SEM对多孔Ni-Ti合金进行了成分及微观结构表征,分析了不同烧结温度对于多孔Ni-Ti合金孔隙率、机械性能、组织成分及微观形貌的影响。结果表明,随着烧结温度的增加,孔隙率降低,抗压强度和杨氏模量增加。对固相体积分数为45vol. %的生坯在1050 ℃条件下高真空烧结保温2h,制备出孔隙率为42.65%,抗压强度为202.65 MPa,杨氏模量为17.14 GPa,主相为NiTi相的多孔Ni-Ti合金,基本满足人体骨性能需要。

    Abstract:

    Porous Ni-Ti alloys are widely used in biomedical implant material because of its shape memory effect. In this work, porous Ni-Ti alloy with large size and complicated shape was fabricated by gel-casting of TiH2 powder and atomization nickel powder, followed by vacuum drying, thermal debinding and subsequent vacuum sintering process. Effects of sintering temperature on porosity, mechanical properties, phase composition and microstructure of porous Ni-Ti alloys were studied by XRD and SEM. With the increase of sintering temperature, the porosity of Ni-Ti alloy reduces while the compression strength and Young’s modulus increases. Under the condition of vacuum sintering at 1050 ℃ for 2h, the obtained samples with the solid loading of 45vol. % exhibits a porosity of 42.65%, compression strength of 202.65 MPa and Young’s modulus of 17.14 GPa, which match the demands of human bones.

    参考文献
    [1] Shabalovskaya SA. Bio-medical materials and engineering[J], 1996, 6(4):267-89
    [2] 王勇平, 陈根元, 刘小荣. 生物骨科材料与临床研究[J], 2010, 7(2):31-35
    [3] V. I. Itin, V. E. Gjunter, S. A. Shabalovskaya. Materials Characterization[J], 1994, 32(3): 179-187
    [4] Shabalovskaya, SA. Bio-Medical Materials and Engineering[J], 2002, 12(1): 69–109
    [5] Bansiddhi. A, Sargeant. T.D. Stupp S.I, and Dunand D.C. Acta Biomaterialia[J], 2008, 4(4): 773-782
    [6] Bing-Yun Li, Li-Jian Rong, and Yi-Yi Li. Journal of Materials Research[J], 1998, 13(10): 2847-2851
    [7] Ismail. Muhammad Hussain; Goodall. Russell; Davies. Hywel A; Todd. Iain. Materials Science and Engineering C-Materials for Biological Applications[J], 2012, 32(6): 1480-1485
    [8] Cai Wei, Feng Xue, and Sui Jiehe. Rare Metals[J], 2012, 31(1): 48-50
    [9] Jiang Xunyong, Liu Qingsuo, Zhang Lei. Rare Metals[J], 2011, 30(SI): 63-67
    [10] Kim. J.S., Kang J.H., Kang S.B., and Yoon K.S. Advanced Engineering Materials[J], 2004, 6(6): 403-406
    [11] Hu Guoxin, Zhang Lixiang, Fan Yunliang, and Li Yanhong. Journal of Materials Processing Technology[J], 2008, 206(1-3): 395-399
    [12] Chen Gang, Cao Peng, Wen Guian, Edmonds Neil, Li Yimin. Intermetallics[J], 2013, 37: 92-99
    [13] Ismail. Muhammad Hussain, Goodall Russell, Davies. Hywel A, Todd Iain. Materials Letters[J], 2012, 70: 142-145
    [14] O. O. Ometete, M. A. Janney, R. A. Strehlow. American Ceramic Society Bulletin[J], 1991, 70(10): 1641-1649
    [15] O. O. Ometete, M. A. Janney, S. D. Nunn. Journal of the European Ceramic Society[J], 1997, 17(2): 407-413
    [16] R. Gilissen, J. P Erauw, A. Smolders, and E. Vanswijgenhoven, J. Luyten. Materials and Design[J], 2000, 21(4): 251-257
    [17] Weihua Liu, Chengchang Jia, Yantao Shi. Rare Metals[J], 2008, 27(1): 78-82
    [18] Yan Li, Zhimeng Guo, Junjie Hao, Shubin Ren. Journal of Materials Processing Technology[J], 2008, 208(1-3): 457-462
    [19] Murat Bengisu, Elvan Yilmaz. Ceramics International[J], 2002, 28 (4): 431-438
    [20] SHI Yantao(史延涛), HU Xuesheng(胡学晟), JIA Chengchang(贾成厂). Powder Metallurgy Industry(粉末冶金工业)[J], 2007, 17(6): 28-32
    [21] Kendra A. Erk, David C. Dunand, and Kenneth R. Shull, Acta Materialia[J], 2008, 56(18): 5147-5157
    [22] LI Yan, GUO Zhimeng, HAO Junjie, and REN Shubin. Rare Metals[J], 2008, 27(3):282
    [23] Y. Li, Z. M. Guo, J. J. Hao, and S. B. Ren. Powder Metallurgy[J], 2008, 51(3): 231-236
    [24] WANG Yali(王亚利), HAO Junjie(郝俊杰), GUO Zhimeng(郭志猛). Powder Metallurgy Industry(粉末冶金工业)[J], 2007, 17(3): 19-22
    [25] Duan Bohua , Hong Haixia and Wang Dezhi. Rare Metals[J], 2014, 33(4): 394-399
    [26] Zhang Yuehong(张月红), Su Yanqing(苏彦庆), Guo Jingjie(郭景杰), Ye Xicong(叶喜聪), Fu Hengzhi(傅恒志). Rare Metal Materials and Engineering稀有金属与工程[J], 2010, 39(6)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

段柏华,谢春革,王德志,万幸.凝胶注模制备多孔Ni-Ti合金的研究[J].稀有金属材料与工程,2017,46(6):1674~1678.[DUAN Bo-hua, XIE Chun-ge, WANG De-zhi, Wan Xing. Porous Ni-Ti alloy prepared by gel-casting[J]. Rare Metal Materials and Engineering,2017,46(6):1674~1678.]
DOI:[doi]

复制
文章指标
  • 点击次数:1406
  • 下载次数: 1329
  • HTML阅读次数: 160
  • 引用次数: 0
历史
  • 收稿日期:2015-03-17
  • 最后修改日期:2015-04-09
  • 录用日期:2015-05-13
  • 在线发布日期: 2017-11-07