+高级检索
放电等离子烧结制备生物Mg-Zn合金的组织及性能
作者:
作者单位:

太原理工大学材料科学与工程学院,太原理工大学材料科学与工程学院,太原理工大学材料科学与工程学院,太原理工大学材料科学与工程学院,新材料界面科学与工程教育部重点实验室;新材料界面科学与工程教育部重点实验室

中图分类号:

TG146

基金项目:

国家自然科学基金资助(项目号51305292)


Microstructures and mechanical properties of biodegradable magnesium-zinc alloy fabricated by spark plasma sintering
Author:
Affiliation:

School of Materials Science and Engineering,Taiyuan university of technology,School of Materials Science and Engineering,Taiyuan university of technology,School of Materials Science and Engineering,Taiyuan university of technology,School of Materials Science and Engineering,Taiyuan university of technology,Key Laboratory of Interface Sscience and Engineering in Advanced Materials,Ministry of Education,Shanxi Taiyuan;Key Laboratory of Interface Sscience and Engineering in Advanced Materials,Ministry of Education,Shanxi Taiyuan

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    以Mg粉和Zn粉为原料,采用高能球磨混粉和放电等离子烧结(SPS)的方法制备了含Zn量为0wt%, 2wt, 4wt%, 6wt%, 8wt%的生物Mg-Zn 合金,对其显微组织、力学性能和腐蚀性能进行了研究。结果表明:制备的Mg-Zn合金内部结构致密,组织分布均匀;显微硬度和抗压强度随Zn含量增加而增加,含量为6wt%时达到最大值(69.0 Hv0.1和379.5 MPa);模拟体液中的电化学腐蚀电位随Zn含量的增加而升高,腐蚀电流密度则降低,在6wt%时分别达到最高值和最小值。浸泡试验中,含Zn量为6wt%合金表现出最好的耐腐蚀性能,随含Zn量的增加,腐蚀形式由严重的点蚀和颗粒剥落转变为轻微的点蚀和颗粒内均匀的晶内腐蚀。

    Abstract:

    Biological Mg-x(2~8) wt%Zn alloys were fabricated from pure magnesium and zinc powders using high-energy ball milling and spark plasma sintering method. The microstructure, mechanical properties and corrosion performance of the biological Mg-Zn alloys were investigated. The results reveal that the sintered samples have a compact and homogenous internal structure. The mechanical properties, i.e. hardness and compression strength increased with increasing Zn content, and reached the maximum (69.0 Hv0.1 and 379.5 MPa) at the 6wt% of Zn. The corrosion potential increased with increasing Zn content, while representing opposite tendency in current density tested in the SBF, and achieved the maximum and minimum respectively at the 6wt% of Zn. Moreover the corrosion mode in SBF transformed from severly crevice corrosion and pitting corrosion into particle spalling, finally presening a internal corrosion of particles and light pitting corrosion with the Zn content increased.

    参考文献
    [1]Nan Li, Yufeng Zheng et al. Journal of Materials Science Technology[J], 2013, 29(6): 489
    [2] Huang Jingjing (黄晶晶), Ren Yibin (任伊宾),Zhang Bingchun(张炳春),Yang Ke(杨柯) et al. Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2007, 36(6): 1102
    [3]El-Rahman SSA. Pharmacological Research[J], 2003, 47(3): 189
    [4]Nakamura Y, Tsumura Y, Tonogai Y, Shibata Y, Ito Y. Fund Appl Toxicol[J], 1997, 37: 106
    [5]Tapiero H, Tew K D. Tapiero H, Tew K D. Biomedicine Pharmacotherapy[J], 2003, 57(9): 3991
    [6]He Yaohua (何耀华),Tao Hairong (陶海荣),Zhang Xiaonong (张小龙) et al. Chinese Science Bulletin (科学通报)[J], 2008, 53( 16): 1981
    [7]Song G.. Corrosion Science[J], 2007, 49(4): 1696
    [8]L.Xu, E. Zhang, D.Yin,S. Zeng,K. Yang. Journal of Materials Science: Materials in Medicine[J], 2008, 19: 1017
    [9]S. Cai, T. Lei, N. Li, F. Feng. Materials Science Engineering C-Materials for Biological Applications[J], 2012, 32:2570
    [10]D-S. Yin, E.-L. Zhang, S.-Y. Zeng et al. Transactions of Nonferrous Metals Society of China[J], 2008, 18: 763
    [11]Zhang S, Zhang X, Zhao C, et al. Acta Biomaterialia[J], 2010, 6(2): 626
    [12]S. Zhang, J. Li, Y. Song, C. Zhao, X. Zhang, C. Xie, Y. Zhang, H. Tao, Y. He, Y. Jiang, Y. Bian. Materials Science Engineering C – Materials for Biological Applications[J], 2009, 29: 1907
    [13]Jiang QC, Wang HY, Ma BX, Wang Y et al. Journal of Alloys and Compounds[J], 2005, 386: 177
    [14]张修庆(Zhang Xiuqin),滕新营(Teng Xinyin),王浩伟(Wang Haowei). Hot Working Technology(热加工工艺)[J], 2004, 3: 58
    [15]Zheng Y F, Gu X N, Xi Y L, et al. Acta biomaterialia[J], 2010, 6(5): 1783
    [16]Z.S. Seyedraoufi, Sh. Mirdamadi. Journal of the Mechanical Behavior of Biomedical Materials[J], 2013, 21: 1
    [17]Omori, M. Materials Science Engineering A [J], 2000, 287:183
    [18]Wei Chongbin(魏崇斌) ,Song Xiaoyan(宋晓艳),付军(Fu Jun) et al. Materials Science and Engineering of Powder Metallurgy(粉末冶金材料科学与工程)[J], 2006, 17(3):315
    [19]M. Pozuelo, Y. W. Chang, J.-M. Yang. Materials Science Engineering A[J], 2014, 594: 203
    [20]Junko Umeda, Masashi Kawakami, Katsuyoshi Kondoh. Materials Chemistry and Physics[J], 2010, 123: 649
    [21]Zhao Haifeng(赵海锋),Zhu Lihui(朱丽慧),Huang Qingwei(黄清伟). Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2005, 34(1): 82
    [22]Z. Shi, G. Song, A. Atrens. Surface Coatings Technology[J]. 2006, 201: 492
    [23]G.Y. Li, J.S. Lian, L.Y. Niu, Z.H. Jiang, Q. Jiang. Surface Coatings Technology[J], 2006, 201(3-4): 1814
    [24]Shuhua Cai, Ting Lei, Nianfeng Li, Fangfang Feng. Materials Science Engineering C[J], 2012, 32: 2570
    [25]Song G L, Atrens A, Stjohn D H, Nairn J, Li Y. Corrosion Science[J], 1997, 39(5): 855
    [26]Witte F, Hort N, Vogt C, et al. Current Opinion in Solid State Materials Science[J], 2008, 12(5-6): 63
    [27]Xu Liping, Pan Feng, Yu Guoning, et al. Biomaterials[J], 2009, 30(8): 1512
    [28]Mueller W D, Lucia Nascimento M, De Mele M F L. Acta Biomaterialia[J], 2010, 6(5): 1749
    [29]Li Z J, Gu X N, Lou S Q, Zheng Y F. Biomaterials[J], 2008, 29(10): 1329
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

程林信,崔泽琴,郭浦山,王文先,许并社.放电等离子烧结制备生物Mg-Zn合金的组织及性能[J].稀有金属材料与工程,2017,46(11):3518~3524.[Cheng Linxin, Cui Zeqin, Guo Pushan, Wang Wenxian, Xu Binshe. Microstructures and mechanical properties of biodegradable magnesium-zinc alloy fabricated by spark plasma sintering[J]. Rare Metal Materials and Engineering,2017,46(11):3518~3524.]
DOI:[doi]

复制
文章指标
  • 点击次数:1523
  • 下载次数: 1737
  • HTML阅读次数: 128
  • 引用次数: 0
历史
  • 收稿日期:2015-09-11
  • 最后修改日期:2015-11-02
  • 录用日期:2015-12-11
  • 在线发布日期: 2017-12-13