+高级检索
热丝脉冲TIG堆焊Inconel625成型质量优化与性能
作者:
作者单位:

西南石油大学 机电工程学院,西南石油大学 机电工程学院,长江大学 机械学院,西南石油大学 机电工程学院,西南石油大学 机电工程学院

基金项目:

国家重点基础研究发展计划“973”计划(2012CB619101);国家自然科学基金(51371168);国家自然科学基金(51101154)


Formation quality optimization and performance of INCONEL 625 cladding using hot-wire pulsed TIG
Affiliation:

Southwest Petroleum University,,,,

Fund Project:

Innovation Foundation of Southwest Petroleum University (CX2014BY05); Open Foundation of Education Department Key Laboratory of Oil and Gas Equipment (OGE201401-01)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于中心复合试验设计方法,采用热丝脉冲TIG工艺在AISI 4130基体上堆焊Inconel 625合金。借助响应面法建立了焊缝几何特征与工艺参数之间的数学模型。根据优化后的工艺参数,获得了平坦、连续、无缺陷的多道两层堆焊层。堆焊层微观组织主要由柱状晶组成,在融合界面附近存在少量的平面晶与胞状晶,其顶部组织为等轴晶与转向晶。利用动态极化曲线法对基体与堆焊层的耐腐蚀性能进行了评价。结果表明:堆焊层的耐腐蚀性随着Fe含量的增加而降低,但增加堆焊层的层数可以显著提高耐腐蚀性能。而且,两层堆焊层试样与铸态Inconel 625的耐腐蚀性能基本相当。

    Abstract:

    Based on the central composite rotatable design (CCD), clad beads of Inconel 625 were deposited on the surface of AISI 4130 plates using hot wire pulsed TIG technology. The response surface methodology (RSM) was utilized to establish models between process parameters and geometrical characteristics of the clad beads. Then, multiple-track two-layer weld overlay was successfully deposited using the optimized process parameters. The microstructure of the weld overlay is primarily composed of columnar dendrites, and there are also a few planar crystals and cellular dendrites situated near the fusion zone. Meanwhile, equiaxed grains and steering dendrites are mainly distributed in the upper portion of the weld overlay. Potentiodynamic polarization tests were used to evaluate the corrosion resistance of the weld overlay and substrate. The results show that adding clad layers can enhance the corrosion resistance, which degrades with the increase in Fe dilution. Moreover, the corrosion resistance of the second layer surface is close to that of wrought Inconel 625.

    参考文献
    [1] Mohammadi Zahrani E, Alfantazi A M. High temperature corrosion and electrochemical behavior of INCONEL 625 weld overlay in PbSO4–Pb3O4–PbCl2–CdO–ZnO molten salt medium[J]. Corrosion Science. 2014, 85(0): 60-76.
    [2] Dinda G P, Dasgupta A K, Mazumder J. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability[J]. Materials Science and Engineering: A. 2009, 509(1–2): 98-104.
    [3] Puppala G, Moitra A, Sathyanarayanan S, et al. Evaluation of fracture toughness and impact toughness of laser rapid manufactured Inconel-625 structures and their co-relation[J]. Materials Design. 2014, 59(0): 509-515.
    [4] Maltin C A, Galloway A M, Mweemba M. Microstructural Evolution of Inconel 625 and Inconel 686CPT Weld Metal for Clad Carbon Steel Linepipe Joints: A Comparator Study[J]. Metallurgical and Materials Transactions A. 2014, 45(8): 3519-3532.
    [5] Xu F J, Lv Y H, Xu B S, et al. Effect of deposition strategy on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by pulsed plasma arc deposition[J]. Materials Design. 2013, 45(0): 446-455.
    [6] Abioye T E, Mccartney D G, Clare A T. Laser cladding of Inconel 625 wire for corrosion protection[J]. Journal of Materials Processing Technology. 2015, 217(0): 232-240.
    [7] Paul C P, Ganesh P, Mishra S K, et al. Investigating laser rapid manufacturing for Inconel-625 components[J]. Optics Laser Technology. 2007, 39(4): 800-805.
    [8] Xu F, Lv Y, Liu Y, et al. Microstructural Evolution and Mechanical Properties of Inconel 625 Alloy during Pulsed Plasma Arc Deposition Process[J]. Journal of Materials Science Technology. 2013, 29(5): 480-488.
    [9] Bhargava P, Paul C P, Premsingh C H, et al. Tandem rapid manufacturing of Inconel-625 using laser assisted and plasma transferred arc depositions[J]. Advances in Manufacturing. 2013, 1(4): 305-313.
    [10] Abioye T E, Folkes J, Clare A T. A parametric study of Inconel 625 wire laser deposition[J]. Journal of Materials Processing Technology. 2013, 213(12): 2145-2151.
    [11] Zareie Rajani H R, Akbari Mousavi S A A, Madani Sani F. Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates[J]. Materials Design. 2013, 43(0): 467-474.
    [12] Dupont J N. Solidication of an Alloy 625 Weld Overlay[J]. Metall Mater Trans A. 1996(27A): 3612-3620.
    [13] Wang F, Williams S, Rush M. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy[J]. The International Journal of Advanced Manufacturing Technology. 2011, 57(5-8): 597-603.
    [14] Madadi F, Ashrafizadeh F, Shamanian M. Optimization of pulsed TIG cladding process of stellite alloy on carbon steel using RSM[J]. Journal of Alloys and Compounds. 2012, 510(1): 71-77.
    [15] Pal K, Pal S K. Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review[J]. Journal of Materials Engineering and Performance. 2011, 20(6): 918-931.
    [16] Mirzaei M, Arabi Jeshvaghani R, Yazdipour A, et al. Study of welding velocity and pulse frequency on microstructure and mechanical properties of pulsed gas metal arc welded high strength low alloy steel[J]. Materials Design. 2013, 51: 709-713.
    [17] Hadadzadeh A, Ghaznavi M M, Kokabi A H. The effect of gas tungsten arc welding and pulsed-gas tungsten arc welding processes’ parameters on the heat affected zone-softening behavior of strain-hardened Al–6.7Mg alloy[J]. Materials Design. 2014, 55: 335-342.
    [18] He H, Yang C, Chen Z, et al. Strength Prediction of Aluminum–Stainless Steel-Pulsed TIG Welding–Brazing Joints with RSM and ANN[J]. Acta Metallurgica Sinica (English Letters). 2014, 27(6): 1012-1017.
    [19] Ola O T, Doern F E. A study of cold metal transfer clads in nickel-base INCONEL 718 superalloy[J]. Materials Design. 2014, 57: 51-59.
    [20] Kumar A, Sundarrajan S. Effect of welding parameters on mechanical properties and optimization of pulsed TIG welding of Al-Mg-Si alloy[J]. The International Journal of Advanced Manufacturing Technology. 2009, 42(1-2): 118-125.
    [21] Liu J, Zhang T, Zhang W, et al. Quantitative Modeling for Corrosion Behavior in Complex Coupled Environment by Response Surface Methodology[J]. Acta Metallurgica Sinica (English Letters). 2015, 28(8): 994-1001.
    [22] Wang J, Wang H, Wang X, et al. Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy[J]. Optics Laser Technology. 2015, 66(0): 15-21.
    [23] Madadi F, Ashrafizadeh F, Shamanian M. Optimization of pulsed TIG cladding process of stellite alloy on carbon steel using RSM[J]. Journal of Alloys and Compounds. 2012, 510(1): 71-77.
    [24] Karthikeyan R, Balasubramanian V. Predictions of the optimized friction stir spot welding process parameters for joining AA2024 aluminum alloy using RSM[J]. The International Journal of Advanced Manufacturing Technology. 2010, 51(1-4): 173-183.
    [25] Wen P, Feng Z, Zheng S. Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel[J]. Optics Laser Technology. 2015, 65(0): 180-188.
    [26] Gomes J H F, Paiva A P, Costa S C, et al. Weighted Multivariate Mean Square Error for processes optimization: A case study on flux-cored arc welding for stainless steel claddings[J]. European Journal of Operational Research. 2013, 226(3): 522-535.
    [27] Wang S, Ma Q, Li Y. Characterization of microstructure, mechanical properties and corrosion resistance of dissimilar welded joint between 2205 duplex stainless steel and 16MnR[J]. Materials Design. 2011, 32(2): 831-837.
    [28] Mortezaie A, Shamanian M. An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel[J]. INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING. 2014, 116: 37-46.
    [29] Ray A, Arora K S, Lester S, et al. Laser cladding of continuous caster lateral rolls: Microstructure, wear and corrosion characterisation and on-field performance evaluation[J]. Journal of Materials Processing Technology. 2014, 214(8): 1566-1575.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭龙龙,郑华林,刘少胡,冯春宇,李悦钦.热丝脉冲TIG堆焊Inconel625成型质量优化与性能[J].稀有金属材料与工程,2016,45(9):2219~2226.[guolonglong, Hualin Zheng, Shaohu Liu, Chunyu Feng, Yueqin Li. Formation quality optimization and performance of INCONEL 625 cladding using hot-wire pulsed TIG[J]. Rare Metal Materials and Engineering,2016,45(9):2219~2226.]
DOI:[doi]

复制
文章指标
  • 点击次数:1502
  • 下载次数: 2971
  • HTML阅读次数: 181
  • 引用次数: 0
历史
  • 收稿日期:2015-10-11
  • 最后修改日期:2016-06-01
  • 录用日期:2016-06-01
  • 在线发布日期: 2016-10-09