+高级检索
再结晶温度对大塑性热变形Ti–6Al–4V微观组织与力学性能的影响
作者:
作者单位:

1.贵州大学 材料与冶金学院;2.贵州省材料结构与强度重点实验室;3.高性能金属结构材料与制造技术国家地方联合工程实验室

基金项目:

贵州省科技重大专项(黔科合[2014]6013)


Effect of recrystallization temperature on microstructures and mechanical properties of severe plastic thermo deformation Ti–6Al–4V alloy
Author:
Affiliation:

1.College of Materials and Metallurgy,University of Guizhou;2.Key Laboratory for Material Structure and Strength of Guizhou Province

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    将Ti–6Al–4V双相钛合金加热至α+β相区,利用墩拔方式进行大塑性热变形,然后将其置于不同的温度下进行再结晶保温热处理。结果表明:材料经形变热处理后,晶粒转变为细小的等轴α晶粒以及条状α+β组织,随再结晶温度的升高,等轴α晶粒逐渐长大,条状α+β组织也逐渐变大,发生再结晶晶粒的体积分数在增加,小角度晶界所占比例减小。800℃再结晶后延伸率和断面收缩率高达19.9%及42.5%,材料的综合力学性能则随再结晶温度的升高呈下降趋势,原因归结于晶粒的粗化及晶粒的均匀性变差所致。

    Abstract:

    The Ti–6Al–4V alloy were thermo-forged in α+β two phase region,and then recrystallized in three different temperatures. The results show that the initial microstructure were fully transformed into fine equiaxed α and lamellar α+β,the fine equiaxed α and lamellar α+βwere gradually coarsening as increasing recrystallization temperature,the relative frequency of recrystallization grain were also increased,low angle boundary shows a converse trend. The total elongation and area reduction reach up to 19.9% and 42.5%,the mechanical properties gradually decreased as the elevate temperature which were attribute to coarse and inhomogeneous grain.

    参考文献
    [1] Valiev R Z, Estrin Y, Horita Z, et al. Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later[J]. Journal of Plasticity Engineering, 2016, 68(4):1216-1226.
    [2] Yang J, Yu H, Yin J, et al. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting[J]. Materials Design, 2016, 108:308-318.
    [3] Chao Q, Cizek P, Wang J, et al. Enhanced mechanical response of an ultrafine grained Ti–6Al–4V alloy produced through warm symmetric and asymmetric rolling[J]. Materials Science Engineering A, 2016, 650:404–413.
    [4] Hiroaki Matsumoto, Hiroshi Yoneda, Kazuhisa Sato,等. Room-temperature ductility of Ti–6Al–4V alloy with α′ martensite microstructure[J]. Materials Science¥s ¥sengineering:a, 2011, 528(3):1512-1520.
    [5] Beladi H, Chao Q, Rohrer G S. Variant selection and intervariant crystallographic planes distribution in martensite in a Ti–6Al–4V alloy[J]. Acta Materialia, 2014, 80:478-489.
    [6] Murty S V S N, Nayan N, Kumar P, et al. Microstructure–texture–mechanical properties relationship in multi-pass warm rolled Ti–6Al–4V Alloy[J]. Materials Science Engineering A, 2014, 589(2):174-181.
    [7] Li J, Liu Z. Influence of Asymmetric Hot Rolling on Microstructure and Mechanical Property of Ti-6Al-4V Alloy Sheet[J]. Rare Metal Materials Engineering, 2016, 45(5):1168-1174.
    [8]Zhang Z X, Qu S J, Feng A H, et al. Achieving grain refinement and enhanced mechanical properties in Ti–6Al–4V alloy produced by multidirectional isothermal forging[J]. Materials Science Engineering A, 2017.
    [9]Wang K L, Fu M W, Lu S Q, et al. Study of the dynamic recrystallization of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy in β-forging process via Finite Element Method modeling and microstructure characterization[J]. Materials Design, 2011, 32(3):1283-1291.
    [10] Ouyang D L, Fu M W, Lu S Q. Study on the dynamic recrystallization behavior of Ti-alloy Ti–10V–2Fe–3V in β processing via experiment and simulation[J]. Materials Science Engineering A, 2014, 619:26-34.
    [11] Zhu S, Yang H, Guo L G, et al. Effect of cooling rate on microstructure evolution during α/β heat treatment of TA15 titanium alloy[J]. Materials Characterization, 2012, 70:101-110.
    [12] Shi Z F, Guo H Z, Han J Y, et al. Microstructure and mechanical properties of TC21 titanium alloy after heat treatment[J]. 中国有色金属学报(英文版), 2013, 23(10):2882-2889.
    [13] Deng Y, Xu G, Yin Z, et al. Effects of Sc and Zr microalloying additions on the recrystallization texture and mechanism of Al–Zn–Mg alloys[J]. Journal of Alloys Compounds, 2013, 580(12):412-426.
    [14] Singh V, Prasad K S, Gokhale A A. Effect of minor Sc additions on structure, age hardening and tensile properties of aluminium alloy AA8090 plate[J]. Scripta Materialia, 2004, 50(6):903-908.
    [15] Hollomon J H, Jaffe L D. Time-temperature relations in tempering steel[J]. 1945.
    [16]Chao Q, Hodgson P D, Beladi H. Thermal stability of an ultrafine grained Ti-6Al-4V alloy during post-deformation annealing[J]. Materials Science Engineering A, 2017.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙皓,梁益龙,张雄菲,李伟,杨明.再结晶温度对大塑性热变形Ti–6Al–4V微观组织与力学性能的影响[J].稀有金属材料与工程,2019,48(9):3015~3021.[Sun Hao, Liang Yilong, Zhang Xiongfei, Li Wei, Yang Ming. Effect of recrystallization temperature on microstructures and mechanical properties of severe plastic thermo deformation Ti–6Al–4V alloy[J]. Rare Metal Materials and Engineering,2019,48(9):3015~3021.]
DOI:10.12442/j. issn.1002-185X.20180293

复制
文章指标
  • 点击次数:941
  • 下载次数: 1296
  • HTML阅读次数: 164
  • 引用次数: 0
历史
  • 收稿日期:2018-03-28
  • 最后修改日期:2018-05-03
  • 录用日期:2018-08-09
  • 在线发布日期: 2019-10-09