+高级检索
石油管用Ti-6Al-4V-0.1Ru钛合金高温流变行为及预测模型研究
作者:
作者单位:

1.中国石油集团石油管工程技术研究院;2.有研科技集团有限公司

基金项目:

国家科技重大专项(2016ZX05020-002);陕西省创新能力支撑计划(2018KJXX-046)


An Investigation of High Temperature Behavior and Constitutive Model of Ti-6Al-4V-0.1Ru Titanium Alloy Used for Oil Country Tubular Goods
Fund Project:

The National Natural Science Foundation of China (2016ZX05020-002);the Shaanxi Innovation Capability Support Program(2018KJXX-046)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    通过使用Gleeble-3500热模拟试验机进行等温单轴压缩试验,研究了Ti-6Al-4V-0.1Ru钛合金在温度800℃ 到 1100℃,应变速率0.01 s-1 到 10 s-1条件下的高温流变行为。结果表明,Ti-6Al-4V-0.1Ru钛合金的峰值应力随着变形温度的降低以及变形速率的增大而增大,软化机制在950℃以下为动态回复,在950℃以上为动态再结晶。通过使用线性回归的方法建立了Ti-6Al-4V-0.1Ru钛合金的Arrhenius本构模型,计算得到该合金的热激活能为720.477 kJ/mol,应变速率敏感指数为4.809。通过引入应变对材料常数α、n、A 和Q 的影响,建立了考虑应变的流变应力预测模型,通过对试验值和预测值的比对,相关系数达到96.9%,说明该模型具有较好的预测精度。

    Abstract:

    The hot deformation behavior of Ti-6Al-4V-0.1Ru titanium alloy was investigated by isothermal compression on Gleeble-3500 thermal simulator under the conditions of deformation temperature ranging from 800℃ to 1100℃ and strain rate ranging from 0.01 s-1 to 10 s-1. The results revealed that the peak stress of Ti-6Al-4V-0.1Ru titanium alloy increased with decreasing the deformation temperature and increasing the strain rate, the softening mechanism was dynamic recovery below 950℃ and dynamic recrystallization above 950℃. The constitutive equation of Ti-6Al-4V-0.1Ru alloy was calculated by a linear regression analysis in two phase regions in the form of Arrhenius-type relationships. It is found that the apparent activation energies were calculated to be 720.477 kJ/mol and strain rate sensitivity index was 4.809. By introducing the influence of strain on the material constants of α, n, A and Q, the fixed constitutive model of flow stress was established, through comparing the experimental and predicted results, the correlation coefficient reached 96.9%, it was illustrated that this constitutive model had better prediction precision.

    参考文献
    [1] Gu Tan(谷坛),Huo Shaoquan(霍绍全),Li Feng(李峰),et al. CHEMICAL ENGINEERINGOFOIL&GAS(石油与天然气化工)[J], 2008, 37, Supplement:63-72
    [2] Ye Dengsheng(叶登胜), Ren yong(任勇), Guan Bin(管彬),et al. Natural Gas Industry(天然气工业) [J], 2009, 29(3): 77-86
    [3] Du Wei(杜伟), Li Helin(李鹤林).Petroleum Tubular Goods & Instrument(石油管材与仪器)[J],2015,1(5):1-5.
    [4] Ye Dengsheng(叶登胜), Ren Yong(任勇), Guan Bin(管彬), et al. Natural Gas Industry(天然气工业) [J], 2009, 29(3): 77-82.
    [5] R.W. Schutz, H.B. Watkins. Mater. Sci. Eng. A[J], 1998,(243):305–315
    [6] Liu Qiang(刘强),Song Shenying(宋生印),et al. Oil Field Equipment(石油矿场机械)[J], 2014,43(12):89-94
    [7] Gao Wenping(高文平), Lv Xianghong(吕祥鸿), Xie Junfeng(谢俊峰),et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2018,47(1):151-156
    [8] R.W. Schutz, Performance of Ruthenium-enhanced Alpha-beta Titanium Alloys in Aggressive Sour Gas and Geothermal Well Produced-fluid Brines[C].NACE Corrosion/97.Paper No.32 (Houston, TX: NACE International,1997).
    [9] R.W. Schutz, Lower-Cost Ruthenium-Enhanced Titanium Alloys for Severe Chemical Service[J], Platinum Metals Review, 40, 2(1996): 54-61.
    [10] R.W. Schutz, J.M. Horrigan, T.A. Bednarowicz, Stress corrosion behavior of Ru-enhanced a lpha-beta titanium alloys in methanol solutions[C],NACE Corrosion/98. Paper No.261(Houston, TX: NACE International,1998).
    [11] T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, P.V.R.K. Sci. Eng.A[J],2000, (284) :184–194.
    [12] Y.D. Qu, M.M. Wang, L.M. Lei, X. Huang, L.Q. Wang, J.N. Qin, Mater. Sci. Eng. A [J], 2012,(555): 99-105.
    [13] Xu Yong(徐勇), Yang Xiangjie(杨湘杰), He Yi(何毅), Du Danni(杜丹妮), Rear Metal Materials and Engineering(稀有金属材料与工程) [J],2017,46(5):1321-1326
    [14] Zhu Xiaoxian(朱晓弦), Chang Hui(常辉), Xie Yingjie(谢英杰), et al. Rear Metal Materials and Engineering(稀有金属材料与工程) [J],2017,46(6):205-210
    [15] Q.G. Meng, C.G. Bai, D.S. Xu, J.Mater. Sci. Technol[J], 2018,(34): 679-688
    [16] J. Luo, M.Q. Li, W.X. Yu, H. Li, Mater. Sci. Eng. A[J], 2009 ,(504): 90-98.
    [17] C.M. Sellars,W.J. Tegart, Acta Metall. [J], 1966, (14) :1136–1138.
    [18] X.Y. Liu, Q.L. Pan, Y.B. He, W.B. Li, W.J. Liang, Z.M. Yin, Mater. Sci. Eng. A[J], 2009 (500):150-154.
    [19] Z.Y. Chen, S.q. Xu, X.H. Dong, Acta Metallurgical Sinica[J], 2008, 21 (6) :451-458.
    [20] Y. Dong, C.S. Zhang, G.Q. Guan, Mater. Des. [J], 2016 (92):983-997.
    [21] S. Gangolu,A.G. Rao, I. Sabirov, Mater. Sci. Eng. A [J],2016, (655): 256–264.
    [22] Z.X. Shi, X.F. Yan, C.H. Duan, J. Alloys Compd. [J], 2015 ,(652):30-38.
    [23] J. W. Zhao, H. Ding, W. J. Zhao, Z. Y. Jiang, Alloys Compd. [J], 2013 (574): 407–414
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘强,白强,田峰,于洋,惠松晓,宋生印.石油管用Ti-6Al-4V-0.1Ru钛合金高温流变行为及预测模型研究[J].稀有金属材料与工程,2020,49(1):177~184.[刘强,baiqiang, tianfeng, yuyang, huisongxiao, songshenying. An Investigation of High Temperature Behavior and Constitutive Model of Ti-6Al-4V-0.1Ru Titanium Alloy Used for Oil Country Tubular Goods[J]. Rare Metal Materials and Engineering,2020,49(1):177~184.]
DOI:10.12442/j. issn.1002-185X.20181182

复制
文章指标
  • 点击次数:1138
  • 下载次数: 1277
  • HTML阅读次数: 174
  • 引用次数: 0
历史
  • 收稿日期:2018-11-25
  • 最后修改日期:2019-01-29
  • 录用日期:2019-02-22
  • 在线发布日期: 2020-02-16