+高级检索
钙钛矿太阳能电池稳定性的研究进展
作者单位:

1.西安工业大学;2.西安交通大学

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [63]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    钙钛矿太阳能电池经过近10年的研究展示出高的光电转换效率(公证PCE达到23.3%)、低成本、容易制备等优势,具有十分广阔的商业化前景。然而,钙钛矿太阳能电池的稳定性问题始终没有系统性地解决办法,严重阻碍其进一步的发展。本文回顾了钙钛矿太阳能电池的发展历程,总结了影响钙钛矿太阳能电池稳定性的几个重要因素,包括水汽、氧气、光照和高温条件对钙钛矿层的化学稳定性以及电子传输层(ETL)、空穴传输层(HTL)和制备工艺对电池稳定性的影响,对稳定机制进行了分析,提出了改善稳定性的一些方法,并根据目前的研究成果展望了钙钛矿太阳能电池的发展趋势。

    Abstract:

    About 10 years of research on perovskite solar cells, it has demonstrated advantages such as higher photoelectric conversion efficiency (notarized PCE of 23.3%), lower cost, simple preparation methods, and has a broad commercial prospects. However, the stability of perovskite solar cells has not been solved, which seriously hinders its further development. This article reviews the development of perovskite solar cells at first. Then, we summarize some important factors that affecting the stability of perovskite solar cells, including water vapor, oxygen, lights, high temperature conditions, electron transport layer (ETL), hole transport layer (HTL) and preparation methods. Meanwhile, we focus on the understanding of the instability mechanism and find some ways to improve the stability of cells. In the end, basing on the current research, we forecasted the development of perovskite solar cells.

    参考文献
    [1] Bull S R. Proceedings of the IEEE[J], 2001, 89(8):1216.
    [2] Chapin D M, Fuller C S, Pearson G L. Journal of Applied Physics[J], 1954, 25(5):676.
    [3] Liang D, Kang Y, Huo Y et al. Nano Letters[J], 2013, 13(10):4850.
    [4] Mathew S, Yella A, Gao Peng et al. Nature Chemistry[J], 2014, 6(3): 242.
    [5] Gong Jiawei, Sumathy K, Qiao Qiquan et al. Renewable & Sustainable Energy Reviews[J], 2017, 68(1):234.
    [6] Yun Sining, Qin Yong, Uhl A R et al. Energy & Environmental Science[J], 2018, 11: 476.
    [7] Kojima A, Teshima K, Shirai Y et al. Journal of the American Chemical Society[J], 2009, 131(17):6050.
    [8] Liu Mingzhen, Johnston M B, Snaith H J. Nature[J], 2013, 501(7467):395.
    [9] Wu Cuncun, Zhang Qiaohui, Liu Yang et al. Advanced Science[J], 2017, 5(3):1700759.
    [10] Ran Chenxin, Xi Jun, Gao Weiyin et al. American Chemical Society Energy Letters[J], 2018, 3(3):713.
    [11] Ye Hengyun, Tang Yuanyuan, Li Pengfei et al. Science[J], 2018, 361:151.
    [12] Kim H S, Lee C R, Im J H et al. Scientific Reports[J], 2012(2):591.
    [13] Kim H S, Lee J W, Yantara N et al. Nano Letters[J], 2013,13(6):2412.
    [14] Zhou H, Chen Q, Li G et al. Science[J], 2014, 345(6196):542.
    [15] Yang W S, Noh J H, Jeon N J et al. Science[J], 2015, 348(6240):1234.
    [16] Li Xiong, Bi Dongqin, Yi Chenyi et al. Science [J], 2016, 353(6294):58.
    [17] Yang W S, Park B W, Jung E H et al. Science[J], 2017, 356(6345):1376.
    [18] Leijtens T, Eperon G E, Noel N K et al. Advanced Energy Materials[J], 2015, 5(20).
    [19] Sharhbazi M, Wang Hongxia. Solar Energy[J], 2016, 123:74.
    [20] Chen Jianqing, Cai Xin, Yang Donghui et al. Power Sources[J], 2017, 355:98.
    [21] Cao Chenghao, Zhang Chujun, Yang Junliang et al. Chemistry of Materials[J], 2016, 28(8):2742.
    [22] Koh T M, Fu Kunwu, Fang Yannan et al. Journal of Physical Chemistry C[J], 2014, 118(30):16458.
    [23] Eperon G E, Burlakov V M, Docampo P et al. Advanced Functional Materials[J], 2014, 24(1):151.
    [24] Soumpos C C, Malliakas C D, Kanatzidis M G. Inorganic Chemistry[J], 2013, 52(15):9019.
    [25] Hao Feng, Stoumpos C C, Guo Peijun et al. American Chemical Society[J], 2015, 137(35):11445.
    [26] Wang Ze, Shi Zejiao, Li Taotao et al. Angewandte Chemie-International Edition[J], 2017, 56(5):1190.
    [27] Manshor N A, Wali Q, Wong K K et al. Chemistry Chemical Physics[J], 2016, 18 (31):21629.
    [28] Philippe B, Park B W, Lindblad R et al. Chemistry of Materials[J], 2015, 27(5):1720.
    [29] Fang Hong, Jena P. Materials Chemistry A[J], 2016, 4(13):4728.
    [30] Chen Haijun(陈海军), Wang Ning(王宁), He Hongcai(何泓材). Electronic Components and Materials(电子元件与材料)[J], 2014, 11:24.
    [31] Jiang Ziheng(蒋子恒), Zhang Xuan(张璇), Shen Qiuwan(沈秋婉) et al. Energy Chemical Industry(能源化工)[J], 2018, 39(3):1.
    [32] Lee J W, Kim H S, Kim D H et al. Advanced Energy Materials[J], 2015, 5(20), 1501310.
    [33] Yang B, Keum J, Ovchinnikova O S et al. American Chemical Society[J], 2016, 138(15), 5028.
    [34] Tai Qidong, Peng You, Sang Hongqian et al. Nature Communications[J], 2016, 7:11105.
    [35] Liang Jia, Zhao Peiyang, Liu Jie et al. American Chemical Society[J], 2017, 139(40):14009.
    [36] Saliba M, Matsui T, Domanski K et al. Energy Environmental Science[J], 2016, 9(6):1989.
    [37] Chen Jian, Miu Weifeng, Wang Jilin et al. Materials Review A[J], 2018, 32(7):2151.
    [38] Niu Guangda, Guo Xudong, Wang Liduo. Materials Chemistry A[J], 2013, 1(38): 11842.
    [39] Zhou Huawei, Shi Yantao, Wang Kai et al. Physical Chemistry C[J], 2015, 119(99):4600.
    [40] Chung In, Lee B, He Jiaqing et al. Nature[J], 2012, 485(7399):486.
    [41] Song Jiaxing, Zheng Enqiang, Liu Leijing. Chemsuschem[J], 2016, 9(18): 2640.
    [42] Guarnera S, Abate A, Zhang Wei et al. Physical Chemistry Letters[J], 2015, 6(3):432.
    [43] Omahony F T F, Lee Y H, Jellett C et al. Materials Chemistry A[J], 2015, 3(14):7219.
    [44] Idigoras J, Todinova A, Valencia J R et al. Physical Chemistry Chemical Physics[J], 2016, 18(19):13583.
    [45] Li Wenzhe, Zhang Wei, Van Reenen S et al. Energy & Environmental Science[J], 2016, 9(2):490.
    [46] Xu Dong, Xiang Fang, Lv Minghang et al. Science Bulletin[J], 2016, 61(3):236.
    [47] Li Yanbo, Jason K C, Carolin M S et al. Nature Communications[J], 2016, 7:12446.
    [48] Son D, Im J, Kim H et al. Physical Chemistry C[J], 2014, 118(30):16567.
    [49] Chen Tao, Shi Tongfei, Li Xinhua et al. Solar RRL[J], 2018:167.
    [50] Chen Peng, Yin Xingtian, Que Meidan et al. Journal of Alloys and Compounds[J], 2018, 735:938.
    [51] Malinauskas T, Tomkutte L D, Sens R et al. American Chemical Society Applied Materials & Interfaces[J], 2015, 7(21):11107.
    [52] Sanchez R S, Mas Marza E. Solar Energy Materials and Solar Cells[J], 2016, 158:189.
    [53] Yin Xingtian, Chen Peng, Que Meidan et al. American Chemical Society Nano[J], 2016, 10(3):3630.
    [54] Cha Mingyang, Da Peimei, Wang Jun et al. Journal of the American Chemical Society[J], 2016, 138(27):8581.
    [55] Mei Anyi, Li Xiong, Liu Linfeng et al. Science[J], 2014, 345(6194):295.
    [56] Liu Ying, Ji Shulin, Li Shuxin et al. Journal of Materials Chemistry A[J], 2015, 3(28):14902.
    [57] Bass K, Mcanally R E, Zhou Shiliang et al. Chemical Communications[J], 2014, 50(99):15819.
    [58] Wang Binbin, Zhang Zhiguo, Ye Senyun et al. Journal of Materials Chemistry A[J], 2016, 4(44):17267.
    [59] Xu Yuzhuan, Zhu Lifeng, Shi Jiangjian et al. Chemphyschem[J], 2016, 17(1):112.
    [60] Qin Chuanjiang, Mattsushima T, Fujihara T et al. Advanced Materials[J], 2016, 28(3):466.
    [61] Sheikh A D, Bear A, Hague M A et al. Solar Energy Materials and Solar Cells[J], 2015, 137:6.
    [62] Gujar T P, Thelakkat M. Energy Technology[J], 2016, 4(3):449.
    [63] Zhang Jing, Zhao Yongle, Yang Dong et al. Royal Society of Chemistry Advances[J], 2016, 6(96):93525.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

戴中华,谢景龙,刘卫国,姚熹.钙钛矿太阳能电池稳定性的研究进展[J].稀有金属材料与工程,2020,49(1):377~384.[Dai Zhonghua, Xie Jinglong, Liu Weiguo, Yao Xi. Research progress in stability of perovskite solar cells[J]. Rare Metal Materials and Engineering,2020,49(1):377~384.]
DOI:10.12442/j. issn.1002-185X.20181185

复制
文章指标
  • 点击次数:1113
  • 下载次数: 1894
  • HTML阅读次数: 163
  • 引用次数: 0
历史
  • 收稿日期:2018-11-26
  • 最后修改日期:2018-12-29
  • 录用日期:2019-01-09
  • 在线发布日期: 2020-02-16