+高级检索
核燃料用γ-U合金的成分规律
作者:
作者单位:

1.大连理工大学三束材料改性教育部重点实验室;2.大连大学物理科学与技术学院;3.中国工程物理研究院材料研究所;4.表面物理与化学重点实验室

基金项目:

本项目得到国家重点研发计划(2017YFB0702400),科学挑战专题(No. TZ2016004)以及表面物理与化学重点实验室学科发展基金(XKFZ201706)支持。


The Composition Rule of γ-U Alloys for nuclear fuel
Author:
Affiliation:

1.Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams Ministry of Education,Dalian University of Technology;2.College of Physical Science and Technology,Dalian University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    铀合金作为一种重要核燃料,其中,体心立方结构的高温稳定的γ-U合金具有较好的综合性能,是合金设计所追求的目标。本文引入描述稳定固溶体结构的“团簇加连接原子”模型,用于建立γ-U固溶体合金的结构模型和相应成分式,指出其结构单元为体心立方第一近邻配位多面体团簇加三个连接原子构成。进而利用该结构单元对现有合金成分进行了解析,能够稳定形成体心立方BCC结构的合金均满足上述模型,如[Mo-U14]Mo3(U-10.7Mo),[Zr-U14]Nb3(U-7.5Nb-2.5Zr,即不锈铀)等,这些合金实际上均在各自体系中具有最优良的结构稳定性,显示出优异的耐蚀性。本文证实,基于团簇加连接原子模型的成分设计方法在预测γ-U合金成分与性能上具有重要指导价值。

    Abstract:

    As an important nuclear fuel, γ-U alloys with the body centered cubic(BCC) structure have high temperature stability and comprehensive performance among Uranium alloys, which are the target of recent alloys design. In the present paper, cluster-plus-glue-atoms structure model, which used to describesolid solution alloys, are applied to build the component formulas of γ-U solution alloys, and clarify that the structural unit of γ-U alloys is composed by BCC first neighbor coordination polyhedron cluster and three glue atoms. Further, an enormous amount of the existing alloy components are analyzed based on the model, which shows that all the BCC-stable alloys satisfy the model, such as [Mo-U14]Mo3(U-10.7Mo), [Zr-U14]Nb3(U-7.5Nb-2.5Zr, i.e., Mulberry alloy), which are all exhibit best structural stability in their respective systems and show excellent corrosion resistance. Therefore, the component design method based on cluster-plus-glue-atoms model clusters has important guiding value on predicting alloys composition and performance.

    参考文献
    [1] 长谷川正义,三岛良绩.核反应堆材料手册[M].北京:原子能出版社,1983
    [2] 范育茂,李增强. 研究试验堆低浓化及在我国的实践[J]. 核安全,2011,01:74-78.
    [3] Sinha V P, Prasad G J, Hegde P V, et al. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application[J]. Journal of Alloys and Compounds, 2009, 473(1-2): 238-244.
    [4] 彭凤,傅蓉. 高功率研究堆低浓化物理特性研究[J]. 核科学与工程,1998,03:18-26.
    [5] Morrell J S. Uranium processing and properties[M]. Springer, 2013.
    [6] McGeary R K. Development and Properties of Uranium-Base Alloys Corrosion Resistant in High-Temperature Water, Part I, Alloys without Protective Cladding[J]. WAPD-127 (April 1955), 1957.
    [7] Hofman G L, Meyer M K, Ray A E. Design of high density gamma-phase uranium alloys for LEU dispersion fuel applications[C]//Proc. Int. Reduced Enrichment for Research and Test Reactors Conf.(Sao Paulo, Brazil, 18–20 October 1998). 1998.
    [8] Tangri K, Williams G I. Metastable phases in the uranium molybdenum system and their origin[J]. Journal of Nuclear Materials, 1961, 4(2): 226-233
    [9] Sinha V P, Hegde P V, Prasad G J, et al. Effect of molybdenum addition on metastability of cubic g-uranium[J]. Journal of Alloys and Compounds, 2010, 491(1): 753-760
    [10] Brown D W, Bourke M A M, Clarke A J, et al. The effect of low-temperature aging on the microstructure and deformation of uranium-6 wt% niobium: An in-situ neutron diffraction study[J]. Journal of Nuclear Materials, 2016, 481: 164-175.
    [11] Tangri K, Chaudhuri D K. Metastable phases in uranium alloys with high solute solubility in the BCC gamma phase. Part I—the system U-Nb[J]. Journal of Nuclear Materials, 1965, 15(4): 278-287
    [12] Koike J, Kassner M E, Tate R E, et al. The Nb-U (niobium-uranium) system[J]. Journal of phase equilibria, 1998, 19(3): 253-260.
    [13] Ewh A, Perez E, Keiser D D, et al. Characterization of Interaction Layer in U-Mo-X (X= Nb, Zr) and U-Nb-Zr vs. Al Diffusion Couples Annealed at 600 C for 10 Hours[C]//Defect and Diffusion Forum. Trans Tech Publications, 2011, 312: 1055-1062.
    [14] Hong H L, Wang Q, Dong C, et al. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: significance of specific compositions of industrial alloys[J]. Scientific reports, 2014, 4.
    [15] 董丹丹. 金属玻璃和固溶体合金的成分根源:近程序结构单元[D].大连理工大学,2017.
    [16] Wang Q, Ji CJ, Wang YM, et al. b-Ti Alloys with Low Young’s Moduli Interpreted by Cluster-Plus-Glue-Atom Model [J]. Metal. Mater. Trans. A, 2013, 44:1872-1879.
    [17] Pang C, Wang Q, Zhang RQ, et al. b Zr-Nb-Ti-Mo-Sn alloys with low Young's modulus and low magnetic susceptibility optimized via a cluster-plus-glue-atom model [J]. Mater. Sci. Eng. A, 2015, 626:369-374.
    [18] Li Z, Zhang R, Zha Q, et al. Composition design of superhigh strength maraging stainless steels using a cluster model[J]. Progress in Natural Science: Materials International, 2014, 24(1): 35-41.
    [19] Zhang J, Wang Q, Wang Y M, et al. Revelation of solid solubility limit Fe/Ni = 1/12 in corrosion-resistant Cu-Ni alloys and relevant cluster model [J]. Mater. Res., 2010, 25:328-331.
    [20] Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12): 2817-2829.
    [21] Vamberskiy Y V, Udovskiy A L, Ivanov O S. Experimental determination and calculation of excess thermodynamic functions of molybdenum solid solutions in gamma-uranium[J]. Journal of Nuclear Materials, 1973, 46(2): 192-206.
    [22] Vambersky Y V, Udovsky A L, Ivanov O S. Investigation of thermodynamic properties of BCC solid solutions of uranium (II). The uranium-niobium system[J]. Journal of Nuclear Materials, 1975, 55(1): 96-108.
    [23] 庞厰. 体心立方置换固溶体的团簇结构模型及其在合金成分设计中的应用[D].大连理工大学,2015.
    [24] Sherman G. Uranium-titanium-niobium alloys: U.S. Patent 2,990,274[P]. 1961-6-27.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

苑峻豪,董丹丹,王清,王英敏,羌建兵,李晓娜,董闯,黄火根,柯海波,张培,张鹏国,刘天伟.核燃料用γ-U合金的成分规律[J].稀有金属材料与工程,2020,49(1):225~232.[Yuan Junhao, Dong Dandan, Wang Qing, Wang Yingmin, Qiang Jianbin, Li Xiaona, Dong Chuang, Huang Huogen, Ke Haibo, Zhang Pei, Zhang Pengguo, Liu Tianwei. The Composition Rule of γ-U Alloys for nuclear fuel[J]. Rare Metal Materials and Engineering,2020,49(1):225~232.]
DOI:10.12442/j. issn.1002-185X.20181259

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-12-18
  • 最后修改日期:2019-01-27
  • 录用日期:2019-03-14
  • 在线发布日期: 2020-02-16