+高级检索
TC4 ELI钛合金显微组织对低周疲劳性能的影响
作者单位:

1.南京工业大学;2.海军研究院;3.海洋装备用金属材料及其应用国家重点实验室

中图分类号:

TG146.2+3

基金项目:

海洋装备用金属材料及其应用国家重点实验室开放基金(项目号SKLMEA-K201807);中国博士后科学基金(项目号2017M623392);江苏省研究生科研与实践创新计划项目(KYCX17_0984);江苏高校优势学科建设工程资助项目(PAPD)


Effect of Microstructure on Low Cycle Fatigue Properties of TC4 ELI Titanium Alloy
Author:
Affiliation:

1.Tech Institute for Advanced Materials,Nanjing Tech University;2.Naval Research Academy;3.State Key Laboratory of Metal Material for Marine Equipment and Application

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本文通过分析TC4 ELI合金在不同应力幅下的应变-循环次数曲线,研究了双态和片层两种典型组织的低周疲劳性能。组织观察发现:双态组织中等轴α相体积分数约26.6%,等轴α相平均晶粒尺寸~7.8 μm。片层组织试样中,α相的片层厚度为0.5 ~ 2.0 μm。低周疲劳性能结果表明:在最大应力水平下,不同组织的TC4 ELI合金均表现出显著的循环软化现象,双态组织具有更加优异的疲劳性能,这主要是因为双态组织中有效的滑移程远小于片层组织,此外高位错密度等轴α相的存在也阻碍了疲劳裂纹的萌生和扩展。扫描断口形貌分析发现:双态组织试样的疲劳断口平整光滑,而片层组织断口则出现了与原始粗大的β晶粒有关的几何形刻面。

    Abstract:

    Low cycle fatigue behavior of TC4 ELI titanium alloy with bimodal and lamellar microstructure had been investigated by analyzation of strain-cycles curve with different stress amplitudes. Results indicated that the volume fraction of equiaxed α phase is about ~ 26.6% for the bimodal microstructure, the average grain size is approximate 7.8 μm. At the same time, the thickness of α phase layer is about 0.5 ~ 2.0 μm for lamellar microstructure. Cyclic softening phenomenon was observed for all the samples of TC4 ELI alloys with different microstructure at the maximum stress. Sample with bimodal microstructure exhibited higher low cycle fatigue life, which could be attributed to the shorter effective slip path than the one with lamellar microstructure. More than that, the presence of equiaxed α-phase with high dislocation density also could hinder the initiation and propagation of fatigue cracks for the bimodal microstructure. Fracture morphology shown flat and smooth for the sample with bimodal microstructure, however, some geometric facets associated with the original coarse-grained β were found for the sample with lamellar microstructure.

    参考文献
    [1] Chang Hui().Titanium Alloys For Marine Applications(海洋工程钛金属材料)[M]. Beijing: Chemical Industry Press,2017:272.
    [2] Jia Hong(贾 翃), Lu Fusheng(逯福生), Hao Bin(郝斌). Titanium Industry Progress[J], 2018,35(2):1-7.
    [3] Fang Zhigang(方志刚), Liu Bin(), LI Guoming(李国明)et al. Materials China[J],2014,33 (7):385-393.
    [4] Li Hui(李 辉), Qu Henglei(曲恒磊),Zhao Yongqing(赵永庆) et al. Chinese Journal of Rare Metals[J], 2005, 29(6):841-844.
    [5] Chen Xiaoyu(陈孝渝). Low cycle fatigue of submarine and submersible structures(潜艇和潜水器结构的低周疲劳)[M]. Beijing: National Defence Industry Press, 1990: 149.
    [6] Huang Lijun(黄利军), Huang Xu(黄 旭). Rare Metal Materials and Engineering[J], 2006,35(5):703- 706.
    [7] Wang Ruifeng, Li Youtang, An Huping. Key Engineering Materials[J], 2012, 525-526:441- 444.
    [8] Wang Lei(王 雷), Wang Kun(王 琨), Li Yanqing(李艳青) et al. Titanium Industry Progress[J], 2018,35(2): 17-21.
    [9] Bantounas I, Lindley T C, Rugg D et al. Acta Materialia[J], 2007, 55(16):5655-5665.
    [10] Zhao Yongqing(赵永庆),Chen Yongnan(陈永楠),Zhang Xuemin(张雪敏) et al. Phase Transformation And Heat Treatment Of Titanium Alloys(钛合金相变及热处理)[M]. Changsha: Central south university press, 2012: 242.
    [11] Guo Ping, Zhao Yongqing, Zeng Weidong et al. Journal of Materials Engineering Performance[J], 2015,24(5):1865-1870.
    [12] Wang Kaixuan, Zeng Weidong, Zhao Yongqing et al. Rare Metal Materials Engineering[J], 2010,39(4):565-569.
    [13] FengKangtun(冯抗屯), ShaAixue(沙爱学), Wang Qingru(王庆如).Journal of Materials Engineering[J], 2009(5):53-56.
    [14] Wu jingzi(吴敬梓), Gu Haideng(顾海澄), Zhou Huijiu(周惠久). Rare Metal Materials and Engineering[J], 1986(6):6-10.
    [15] Yu Teng(), Wang Lei(), Zhao Yongqing(赵永庆) et al. Rare Metal Materials and Engineering[J], 2011, 40(3):457-461.
    [16] Ma Yingjie(马英杰), LI Jinwei(李晋炜), Lei Jiafeng(雷家峰) et al. Acta Metallurgica Sinica[J], 2010, 46(9):1086-1092.
    [17] Zhang Qingling(张庆玲), LI Xingwu(李兴无). Journal of Materials Engineering[J], 2007(7):3-5.
    [18] Zhu Shunpeng(朱顺鹏), Huang hongzhong(黄洪钟), He liping(何俐萍) et al. Acta Aeronautica et Astronautica Sinica[J], 2011, 32(8): 1445-1452.
    [19] Shen Zhumin(沈祝闽), Xie Jizhou(谢济洲). Journal of Aeronautical Materials[J],1995,15(4):54-61.
    [20] Li Ting(李婷), Ma Yan(马雁), Rare Metal Materials and Engineering[J], 2013, 42(5): 1075-1079.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙洋洋,常辉,方志刚,王莹,董月成,郭艳华,周廉. TC4 ELI钛合金显微组织对低周疲劳性能的影响[J].稀有金属材料与工程,2020,49(5):1623~1628.[Sun Yangyang, Chang Hui, Fang Zhigang, Wang Ying, Dong Yuecheng, Guo Yanhua, Zhou Lian. Effect of Microstructure on Low Cycle Fatigue Properties of TC4 ELI Titanium Alloy[J]. Rare Metal Materials and Engineering,2020,49(5):1623~1628.]
DOI:10.12442/j. issn.1002-185X.20190114

复制
文章指标
  • 点击次数:963
  • 下载次数: 1975
  • HTML阅读次数: 153
  • 引用次数: 0
历史
  • 收稿日期:2019-01-29
  • 最后修改日期:2019-04-06
  • 录用日期:2019-04-10
  • 在线发布日期: 2020-06-05