+高级检索
MCrAlY涂层高温氧化界面扩散行为研究进展
作者单位:

1.中南大学;2.广东省新材料研究所


Recent Advances for Interface Diffusion Behavior in MCrAlY Coatings at Elevated Temperature Oxidation
Author:
Affiliation:

1.State Key Laboratory of Powder Metallurgy,Central South University;2.Guangdong Institute of New Materials,National Engineering Laboratory for Modern Materials Surface Engineering Technology,Key Lab of Guangdong for Modern Surface Engineering Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [90]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    MCrAlY涂层在保护基体高温氧化和腐蚀方面发挥着重要作用,可在基体表面形成致密连续的氧化层,阻止阳离子和氧的扩散。随着氧化铝层的生长,导致涂层/氧化层界面处铝浓度降低,抑制了连续的Al2O3层的生长,导致混合氧化物和裂缝以及空隙的形成,使得涂层过早失效。在涂层和基体界面,真空热处理提高了界面的结合强度,改善了涂层与基体的粘附性。然而在高温下的界面扩散过程将对基体产生有害的影响。基体的难熔强化元素,如Ti,W,Mo,可以扩散到涂层中。而且相互扩散过程可在基体形成二级反应区(SRZ),析出拓扑密堆相(TCP)相,如σ,μ和Laves相等,降低高温合金的高温疲劳寿命。在本文中,详细介绍了涂层/基体的界面扩散过程,以及总结了当前对界面扩散效应的理解以及对减少界面扩散所做的努力。

    Abstract:

    MCrAlY coatings are playing an important role in protecting the substrate from oxidation and corrosion at high temperature, which can form dense and continuous oxide scales on the surface to retard the diffusion of cations and oxygen. With the depletion of Al for the growth of alumina layer, the concentration of aluminum in the coating near coating/oxide scales interface decreased, which further suppresses the consecutive Al2O3-scale growth, causing the formation of mixed oxide compounds and cracks as well as voids. This process can cause premature failure of the coating. Between the coatings and the superalloy, the interdiffusion process after vacuum heat treatment is beneficial, which can improve the adhesion of the coating and the substrate. However, because of its thermally activated nature, the interface diffusion process will make deleterious effects at elevated temperature. The elements of the substrate, like Ti, W, Mo, can diffuse into coating. Furthermore, the interdiffusion process in the coating/substrate will form a secondary reaction zone (SRZ), which mainly consists of high density of topologically close-packed (TCP) phases, such as σ, μ and Laves phases. These TCP phases in the matrix may reduce the high-temperature fatigue life of the superalloy.

    参考文献
    [1] Perepezko J H. The hotter the engine, the better [J]. Science, 2009, 326(5956):1068-1069.
    [2] Sun J, Fu Q G, Liu G N, et al. Thermal shock resistance of thermal barrier coatings for nickel-based superalloy by supersonic plasma spraying [J]. Ceramics International, 2015, 41(8):9972-9979.
    [3] Naeimi F, Rahimipour M R, Salehi M. Effect of sandblasting process on the oxidation behavior of HVOF MCrAlY coatings[J]. Oxidation of Metals, 2016, 86(1-2):59-73.
    [4] Sirvent P, Cruz D, Múnez C J, et al. Microstructure and high-temperature oxidation behavior of cold gas-sprayed Ni-Al2O3 coatings [J]. Journal of Thermal Spray Technology, 2016, 25(4):694-703.
    [5] Lee C, Kim J. Microstructure of kinetic spray coatings: a review [J]. Journal of Thermal Spray Technology, 2015, 24(4):592-610.
    [6] Sun J , Jiang S M , Yu H J , et al. Oxidation behavior of Pt modified aluminized NiCrAlYSi coating on a Ni-based single crystal superalloy [J]. Corrosion Science, 2018, 139(7):172-184.
    [7] Kim D, Shin I, Koo J, et al. Quantitative analysis on the depletion rate of β-NiAl phases in MCrAlY coating [J]. Journal of Mechanical Science Technology, 2014, 28(2):513-519.
    [8] GAMM-Seminar, Hackbusch W, Wittum G. Research progress on modification in compositions of MCrAlY coatings [J]. Surface Technology, 2014, 43(3):152-128.
    [9] Jackson R D, Taylor M P, Evans H E, et al. Oxidation study of an EB-PVD MCrAlY thermal barrier coating system [J]. Oxidation of Metals, 2011, 76(3-4):259-271.
    [10] Yanar N M, Kim G, Hamano S, et al. Microstructural characterization of the failures of thermal barrier coatings on Ni-base superalloys [J]. High Temperature Technology, 2014, 20(4):495-506.
    [11] Fossati A, Ferdinando M D, Bardi U, et al. Influence of surface finishing on the oxidation behavior of VPS MCrAlY coatings [J]. Journal of Thermal Spray Technology, 2012, 21(2):314-324.
    [12] Waki H, Kitamura T, Kobayashi A. Effect of thermal treatment on high-temperature mechanical properties enhancement in LPPS, HVOF, and APS CoNiCrAlY coatings [J]. Journal of Thermal Spray Technology, 2009, 18(4):500-510.
    [13] Yuan K, Peng R L, Li X H, et al. Some aspects of elemental behaviour in HVOF MCrAlY coatings in high-temperature oxidation [J]. Surface Coatings Technology, 2015, 261(1):86-101.
    [14] Guo M H, Wang Q M, Ke P L, et al. The preparation and hot corrosion resistance of gradient NiCoCrAlYSiB coatings [J]. Surface Coatings Technology, 2006, 200(12):3942-3949.
    [15] Task M N, Gleeson B, Pettit F S, et al. Compositional factors affecting protective alumina formation under type II hot corrosion conditions [J]. Oxidation of Metals, 2013, 80(5-6):541-552.
    [16] Salam S, Hou P Y, Zhang Y D, et al. Compositional effects on the high-temperature oxidation lifetime of MCrAlY type coating alloys [J]. Corrosion Science, 2015, 95(3):143-151.
    [17] Ch?cmanowski J, Matraszek A, Szczygie? I, et al. High-temperature oxidation of FeCrAl alloy with alumina–silica–ceria coatings deposited by sol–gel method [J]. Journal of Thermal Analysis Calorimetry, 2013, 113(1):311-318.
    [18] Chen Y, Zhao X F, Xiao P. Effect of microstructure on early oxidation of MCrAlY coatings [J]. Acta Materialia, 2018, 159(15): 150-162.
    [19] Puetz P, Huang X, Yang Q, et al. Transient oxide formation on APS NiCrAlY after oxidation heat treatment [J]. Journal of Thermal Spray Technology, 2011, 20(3):621-629.
    [20] R. Swad?ba, L. Swad?ba, J. Wiedermann, et al. Characterization of alumina scales grown on a 2nd generation single crystal Ni superalloy during isothermal oxidation at 1050, 1100 and 1150 ℃ [J]. Oxidation of Metals, 2014, 82(3-4):195-208.
    [21] Zhu C, Li P, Wu X Y. A study of the diffusion and pre-oxidation treatment on the formation of Al2O3, ceramic scale on NiCrAlY bond-coat during initial oxidation process [J]. Ceramics International, 2016, 42(6):7708-7716.
    [22] Peng H, Guo H, He J, et al. Microscale lamellar NiCoCrAlY coating with improved oxidation resistance [J]. Surface Coatings Technology, 2012, 207(21):110-116.
    [23] Jamnapara N I, Frangini S, Alphonsa J, et al. Comparative analysis of insulating properties of plasma and thermally grown alumina films on electrospark aluminide coated 9Cr steels [J]. Surface and Coatings Technology, 2015, 266(3):146-150.
    [24] Fang X, Zhang G, Feng X. Performance of TBCs system due to the different thicknesses of top ceramic layer [J]. Ceramics International, 2015, 41(2):2840-2846.
    [25] Song X, Meng F, Kong M, et al. Advanced analysis on growth mechanisms of thermally grown oxide at elevated temperature for thermal barrier coatings [J]. Vacuum, 2016, 134(9):33-39.
    [26] Chen Y, Zhao X, Bai M, et al. A mechanistic understanding on rumpling of a NiCoCrAlY bond coat for thermal barrier coating applications [J]. Acta Materialia, 2017, 128(4):31-42.
    [27] Yang L, Chen M, Wang J, et al. Diffusion of Ta and its influence on oxidation behavior of nanocrystalline coatings with different Ta, Y and Al contents [J]. Corrosion Science, 2017, 126(9): 344-355.
    [28] Tang J J, Bai Y, Liu K, et al. Microstructural evolution of SAPS/HVOF CoNiCrAlY alloy coating during thermal cycling test [J]. Oxidation of Metals, 2016, 86(1-2):75-87.
    [29] Liu Y Z, Hu X B, Zheng S J, et al. Microstructural evolution of the interface between NiCrAlY coating and superalloy during isothermal oxidation[J]. Materials Design, 2015, 80(5):63-69.
    [30] Zhao P, Shen M, Gu Y, et al. Oxidation behavior of NiCrAlY coatings prepared by arc ion plating using various substrate biases: Effects of chemical composition and thickness of the coatings[J]. Corrosion Science, 2017, 126(9):317-323.
    [31] Sequeira C A C. High temperature oxidation testing and evaluation[M]// Uhlig''s Corrosion Handbook, Third Edition, 2011.
    [32] Zhang B Y, Yang G J, Li C X, et al. Non-parabolic isothermal oxidation kinetics of low pressure plasma sprayed MCrAlY bond coat [J]. Applied Surface Science, 2017, 406(2):99-109.
    [33] Mao W G, Luo J M, Dai C Y, et al. Effect of heat treatment on deformation and mechanical properties of 8mol% yttria-stabilized zirconia by Berkovich nanoindentation [J]. Applied Surface Science, 2015, 338(2):92-98.
    [34] Li X, Huang X, Yang Q, et al. Isothermal and cyclic oxidation performance of vertically cracked and columnar thermal barrier coating structures produced using axial suspension plasma spraying process [J]. Journal of Engineering for Gas Turbines Power, 2016, 138(1): 1229-1236.
    [35] Mercier D, Kaplin C, Goodall G, et al. Parameters influencing the oxidation behavior of cryomilled CoNiCrAlY [J]. Surface Coatings Technology, 2010, 205(7):2546-2553.
    [36] Chen S F, Liu S Y, Wang Y, et al. Microstructure and properties of HVOF-sprayed NiCrAlY coatings modified by rare earth [J]. Journal of Thermal Spray Technology, 2014, 23(5):809-817.
    [37] Poza P, Gómez-García J, Múnez C J. TEM analysis of the microstructure of thermal barrier coatings after isothermal oxidation [J]. ActaMaterialia, 2012, 60(20):7197-7206.
    [38] Mohammadreza D , Mat Y M A , Kay C M , et al. Effects of Al2O3 diffusion barrier layer (including Y-containing small oxide precipitates) and nanostructured YSZ top coat on the oxidation behavior of HVOF NiCoCrAlTaY/APS YSZ coatings at 1100℃ [J]. Corrosion Science, 2018, 144(7):13-34.
    [39] Nayebpashaee N, Seyedein S H, Aboutalebi M R, et al. Finite element simulation of residual stress and failure mechanism in plasma sprayed thermal barrier coatings using actual microstructure as the representative volume [J]. Surface Coatings Technology, 2016, 291(4):103-114.
    [40] Bai B, Guo H, Peng H, et al. Cyclic oxidation and interdiffusion behavior of a NiAlDy/RuNiAl coating on a Ni-based single crystal superalloy [J]. Corrosion Science, 2011, 53(9):2721-2727.
    [41] Liang T, Guo H, Peng H, et al. Precipitation phases in the nickel-based superalloy DZ125 with YSZ/CoCrAlY thermal barrier coating[J]. Journal of Alloys Compounds, 2011, 509(34):8542-8548.
    [42] Cheng K Y, Jo C Y, Jin T, et al. Precipitation behavior of μ phase and creep rupture in single crystal superalloy CMSX-4 [J]. Journal of Alloys Compounds, 2011, 509(25):7078-7086.
    [43] Rettig R, Singer R F. Numerical modelling of precipitation of topologically close-packed phases in nickel-base superalloys [J]. Acta Materialia, 2011, 59(1):317-327.
    [44] Shi L, Xin L, Wang X, et al. Influences of MCrAlY coatings on oxidation resistance of single crystal superalloy DD98M and their inter-diffusion behaviors [J]. Journal of Alloys Compounds, 2015, 649(7):515-530.
    [45] Das D K, Gleeson B, Murphy K S, et al. Formation of secondary reaction zone in ruthenium bearing nickel based single crystal superalloys with diffusion aluminide coatings [J]. Metal Science Journal, 2013, 25(2):300-308.
    [46] Zhong J, Liu J, Zhou X, et al. Thermal cyclic oxidation and interdiffusion of NiCoCrAlYHf coating on a Ni-based single crystal superalloy [J]. Journal of Alloys Compounds, 2016, 657(2):616-625.
    [47] Wang D, Peng H, Gong S, et al. NiAlHf/Ru: promising bond coat materials in thermal barrier coatings for advanced single crystal superalloys [J]. Corrosion Science, 2014, 78(1):304-312.
    [48] Das D K, Gleeson B, Murphy K S, et al. Formation of secondary reaction zone in ruthenium bearing nickel based single crystal superalloys with diffusion aluminide coatings [J]. Metal Science Journal, 2013, 25(2):300-308.
    [49] Zhong X, Zhao H, Zhou X, et al. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating[J]. Journal of Alloys Compounds, 2014, 593(593):50-55.
    [50] Zhang B Y, Yang G J, Li C X, et al. Non-parabolic isothermal oxidation kinetics of low pressure plasma sprayed MCrAlY bond coat [J]. Applied Surface Science, 2017, 406(2):99-109.)
    [51] Cheruvu N S, Chan K S, Viswanathan R. Evaluation, degradation and life assessment of coatings for land based combustion turbines [J]. Energy Materials, 2013, 1(1):33-47.
    [52] Mishra S K, Jagdeesh N, Pathak L C. Fabrication of nanosized lanthanum zirconate powder and deposition of thermal barrier coating by plasma spray process [J]. Journal of Materials Engineering Performance, 2016, 25(7):2570-2575.
    [53] Sangalli D, Debernardi A. Exchange-correlation effects in the monoclinic to tetragonal phase stabilization of yttrium-doped ZrO2: a first-principles approach [J]. Physical Review B, 2011, 84(21):2461-2468.
    [54] Fritscher, Klaus, Braue, et al. Assessment of cyclic lifetime of NiCoCrAlY/ZrO2-based EB-PVD TBC systems: via reactive element enrichment in the mixed zone of the TGO scale [J]. Metallurgical Materials Transactions A, 2013, 44(5):2070-2082.
    [55] Mema R, Yuan L, Du Q, et al. Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper [J]. Chemical Physics Letters, 2011, 512(1):87-91.
    [56] Chen H, Gao Y, Luo H, et al. Preparation and thermophysicalproperties of La2 Zr2O7 coatings by thermal spraying of an amorphous precursor [J]. Journal of Thermal Spray Technology, 2011, 20(6):1201-1208.
    [57] Mishra S K, Jagdeesh N, Pathak L C. Fabrication of nanosizedlanthanum zirconatepowder and deposition of thermal barrier coating by plasma spray process [J]. Journal of Materials Engineering Performance, 2016, 25(7):2570-2575.
    [58] Gao W, Li Z. Developments in high-temperature corrosion and protection of materials [M]. CRC PRESS, 2008.
    [59] Heuer A H, Nakagawa T, Azar M Z, et al. On the growth of Al2O3, scales ☆[J]. ActaMaterialia, 2013, 61(18):6670-6683.
    [60] Pint B A. The future of alumina-forming alloys: challenges and applications for power generation[C]// Materials Science Forum. 2011, 696(9):57-62.
    [61] L. Hu, D. B. Hovis, A. H. Heuer. Transient Oxidation of a γ-Ni–28Cr–11Al alloy [J]. Oxidation of Metals, 2010, 73(1-2):275-288.
    [62] Yanar N M, Pettit F S, Meier G H. Failure characteristics during cyclic oxidation of yttria stabilized zirconia thermal barrier coatings deposited via, electron beam physical vapor deposition on platinum aluminide and on NiCoCrAlY bond coats with processing modifications for improved performance [J]. Metallurgical Materials Transactions A, 2006, 37(5):1563-1580.
    [63] WANG H Y,ZUO D W,LI X F,et al.Effects of CeO2 nanoparticles on microstructure and properties of laser cladded NiCoCrAlY coatings [J]. Journal of Rare Earths, 2010, 28(2):246-250.
    [64] He J, Zhang Z, Peng H, et al. The role of Dy and Hf doping on oxidation behavior of two-phase (γ′+β) Ni–Al alloys [J]. Corrosion Science, 2015, 98(9):699-707.
    [65] Salam S, Hou P Y, Zhang Y D, et al. Compositional effects on the high-temperature oxidation lifetime of MCrAlY type coating alloys [J]. Corrosion Science, 2015, 95(7):143-151.
    [66] Pulci G, Tirillò J, Marra F, et al. High temperature oxidation and microstructural evolution of modified MCrAlY coatings [J]. Metallurgical Materials Transactions A, 2014, 45(3):1401-1408.
    [67] Chen S F, Liu S Y, Wang Y, et al. Microstructure and properties of HVOF-sprayed NiCrAlY coatings modified by rare earth [J]. Journal of Thermal Spray Technology, 2014, 23(5):809-817.
    [68] Qi W, Peng H, He J, et al. Cyclic oxidation and interdiffusion behavior of Pt modified NiAlHfCrSi coatings on single crystal superalloy containing Mo [J]. Surface Coatings Technology, 2014, 259(11):426-433..
    [69] B. Gleeson: Unpublished work presented at thermal barrier coatings III, ECI Conference, 2011, at Irsee, Germany.
    [70] Ma J, Jiang S M, Gong J, et al. Composite coatings with and without an in situ forming Cr-based interlayer: Preparation and oxidation behavior [J]. Corrosion Science, 2011, 53(9):2894-2901.
    [71] Reddy K T, Cernansky N P, Cohen R S. Degradation mechanisms of n-dodecane with sulfur and nitrogen dopants during thermal stressing [J]. Journal of Propulsion Power, 2015, 5(1):6-13.
    [72] Szymański K, Hernas A, Moskal G, et al. Thermally sprayed coatings resistant to erosion and corrosion for power plant boilers - a review [J]. Surface Coatings Technology, 2015, 268(4):153-164.
    [73] Guo C, Wang W, Cheng Y, et al. Yttria partially stabilised zirconia as diffusion barrier between NiCrAlY and Ni-base single crystal René N5 superalloy [J]. Corrosion Science, 2015, 94(5):122-128.
    [74] Cheng Y X, Wang W, Zhu S L, et al. Arc ion plated-CrO intermediate film as a diffusion barrier between NiCrAlY and γ-TiAl [J]. Intermetallics, 2010, 18(4):736-739.
    [75] Peng H, Guo H, He J, et al. Cyclic oxidation and diffusion barrier behaviors of oxides dispersed NiCoCrAlY coatings [J]. Journal of Alloys Compounds, 2010, 502(2):411-416.
    [76] C. Guo, W. Wang, Y. Cheng, S. Zhu, F. Wang, Yttria partially stabilised zirconia as diffusion barrier between NiCrAlY and Ni-base single crystal René N5 superalloy [J], Corrosion. Science, 2015, 94(5):122–128.
    [77] Ren P, Zhu S, Wang F. TEM study of the evolution of sputtered Ni+CrAlYSiHfN nanocomposite coating with an AlN diffusion barrier at high temperature [J]. Surface Coatings Technology, 2016, 286(6):262-267.
    [78] Ren P, Zhu S, Wang F. Microstructural stability of AlN diffusion barrier for nanocomposite Ni+CrAlYSiHfN coating on single crystal superalloy at high temperatures [J]. Applied Surface Science, 2015, 359(11):420-425.
    [79] Zhang B Y, Yang G J, Li C X, et al. Non-parabolic isothermal oxidation kinetics of low pressure plasma sprayed MCrAlY bond coat [J]. Applied Surface Science, 2017, 406(2):99-109.
    [80] Elsa? M, Frommherz M, Oechsner M. The influence of the coating deposition process on the interdiffusion behavior between nickel-based superalloys and MCrAlY bond coats [J]. Journal of Thermal Spray Technology, 2018, 27(3):379-390.
    [81] Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings [J]. Progress in Materials Science, 2001, 46(5):505-553.
    [82] Guo H B, Gong S K, Xu H B. Research progress of new high/ultra-high temperaturethermal barrier coatings and processing technologies [J]. Acta Aeronautica et Astronautica Sinica. 2014. 35(10):2722-2732.
    [83] Gong X , Peng H , Ma Y , et al. Microstructure evolution of an EB-PVD NiAl coating and its underlying single crystal superalloy substrate [J]. Journal of Alloys and Compounds, 2016, 672(2):36-44.
    [84] Bestor M A, Alfano J P, Weaver M L. Influences of chromium and hafnium additions on the microstructures of β-NiAl coatings on superalloy substrates [J]. Intermetallics, 2011, 19(11):1693-1704.
    [85] He J, Luan Y, Guo H, et al. The role of Cr and Si in affecting high-temperature oxidation behaviour of minor Dy doped NiAl alloys [J]. Corrosion Science, 2013, 77(1):322-333.
    [86] Guo H, Zhang T, Wang S, et al. Effect of Dy on oxide scale adhesion of NiAl coatings at 1200℃ [J]. Corrosion Science, 2011, 53(6):2228-2232.
    [87] Li D, Guo H, Wang D, et al. Cyclic oxidation of β-NiAl with various reactive element dopants at 1200℃ [J]. Corrosion Science, 2013, 66(9):125-135.
    [88] Zhang T, Guo H, Gong S, et al. Effects of Dy on the adherence of Al2O3/NiAl interface: A combined first-principles and experimental studies [J]. Corrosion Science, 2013, 66(1):59-66.
    [89] Yanar N M, Meier G H, Pettit F S. The influence of platinum on the failure of EBPVD YSZ TBCs on NiCoCrAlY bond coats [J]. Scripta Materialia, 2002, 46(4):325-330.
    [90] Rana N, Mahapatra M M, Jayaganthan R, et al. High-Temperature oxidation and hot corrosion studies on NiCrAlY coatings deposited by flame-spray technique [J]. Journal of Thermal Spray Technology, 2015, 24(5):769-777.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨洪志,邹俭鹏,石倩,林松盛,代明江,王迪. MCrAlY涂层高温氧化界面扩散行为研究进展[J].稀有金属材料与工程,2020,49(7):2240~2249.[YANG Hong-zhi, ZOU Jian-peng, SHI Qian, LIN Song-sheng, DAI Ming-jiang, WANG Di. Recent Advances for Interface Diffusion Behavior in MCrAlY Coatings at Elevated Temperature Oxidation[J]. Rare Metal Materials and Engineering,2020,49(7):2240~2249.]
DOI:10.12442/j. issn.1002-185X.20190271

复制
文章指标
  • 点击次数:979
  • 下载次数: 1356
  • HTML阅读次数: 166
  • 引用次数: 0
历史
  • 收稿日期:2019-03-29
  • 最后修改日期:2019-05-16
  • 录用日期:2019-06-14
  • 在线发布日期: 2020-08-31