+高级检索
铌在铀熔体中的溶解扩散行为研究
作者:
作者单位:

中国工程物理研究院材料研究所

基金项目:

中国工程物理研究院材料研究所特聘人才专项基金(TP02201801)


Research on the Dissolution and Diffusion of Niobium in Uranium Melt
Author:
Affiliation:

Institute of Materials, China Academy of Engineering Physics

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    铀铌合金具有优异的抗腐蚀性能和良好的综合力学性能,是核工程中重要的结构与功能材料。通过直接真空感应熔炼的方式实现铀铌合金的合金化,可大幅度提高铀铌合金的生产效率。然而,铀铌合金的真空感应熔炼合金化过程易出现合金化不充分的现象,该问题主要与固态铌在铀熔体中的溶解扩散过程有关。为了提高对固态铌在铀熔体中的溶解扩散的认识,精确优化铀铌合金的真空感应熔炼工艺,提升铀铌合金材料质量,本文对固态铌在铀熔体中的溶解扩散行为进行了研究。通过溶解扩散实验获得铌在铀熔体中的溶解速率v与熔体温度T存在v=0.3651exp(-21150[K]/T)[m/s]关系;对U/Nb溶解扩散界面进行了表征,结果显示铌溶解于铀熔体的过程中,U/Nb溶解扩散界面形成了与固态Nb存在位向关系的片状结构;对比有无电磁搅拌情况下铌在铀熔体中的溶解行为及U/Nb界面结构,结果表明电磁搅拌提高了铌在铀中的溶解速率并改变了U/Nb界面的片状结构。

    Abstract:

    Uranium-niobium (U-Nb) alloys have excellent corrosion resistance and good mechanical properties. They are good candidates for structural materials and functional materials of nuclear engineering. Fabrication of high quality uranium-niobium alloys using direct vacuum induction melting process is of great significance for efficiency promotion. But unsufficient alloying is the main problem of U-Nb alloy fabricated by direct vacuum induction melting process. The dissolution and diffusion of solid Nb in U melt is the key point of direct vacuum induction melting process of U-Nb alloy. So, in this paper, we investigated the dissolution and diffusion of Nb in U melt using experimental method. The actual dissolution rate of Nb in U melt with different temperature was obtained. The dissolution rate of Nb in U melt v and the melt temperature T have a relation of v=0.3651exp(-21150[K]/T)[m/s]. Scanning electron microscope observation shows sheet structure forms at the U/Nb interface during the dissolution process of Nb in U melt. When electromagnetic stirring is used, the dissolution rate of Nb in U melt increases obviously and the morphology of sheet structure at the U/Nb interface changes.

    参考文献
    [1] 张文祥, 王春生, 胡晓丹. 铀冶金工艺学[M]. 中国原子能出版社, 2013
    [2] Chiswik H H, Dwight A E, Lloyd L T, et al. Advances in the physical metallurgy of uranium and its alloys[R]. Argonne National Lab., Lemont, Ill., 1958
    [3] Burke J J, Colling D A, Gorum A E, et al. Physical metallurgy of uranium alloys[R]. Brook Hill Publishing Co., Chestnut Hill, MA, 1976
    [4] Tetsui T. Intermetallics[J], 2002, 10(3): 239
    [5] Sha J, Hirai H, Tabaru T, et al. Materials Science and Engineering: A[J], 2004, 364(1-2): 151
    [6] 武兴君. Nb基超高温合金母合金锭的制备及定向凝固用坩埚的选择[D]. 西北工业大学, 2006
    [7] Koike J, Kassner M E, Tate R E, et al. Journal of phase equilibria[J], 1998, 19(3): 253
    [8] 孙振岩, 刘春明. 合金中的扩散与相变[M]. 东北大学出版社, 2002
    [9] Van Loo F J J, Rieck G D. Acta Metallurgica[J], 1973, 21(1): 61
    [10] Jiang S Y, Li S C, Zhang L. Transactions of Nonferrous Metals Society of China[J], 2013, 23(12):3545
    [11] Lopez G A, Sommadossi S, Gust W, et al. Interface science[J], 2002, 10(1): 13
    [12] Dash J G. Reviews of Modern Physics[J], 1999, 71(5): 1737
    [13] Chou T, Nelson D R. Physical Review E[J], 1996, 53(3): 2560
    [14] Burakovsky L, Preston D L, Silbar R R. Physical Review B[J], 2000, 61(22): 15011
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邓鸿章,王震宏,赵福泽,宋衎,苏斌.铌在铀熔体中的溶解扩散行为研究[J].稀有金属材料与工程,2020,49(6):1984~1988.[Deng Hongzhang, Wang Zhenhong, Zhao Fuze, Song Kan, Su Bin. Research on the Dissolution and Diffusion of Niobium in Uranium Melt[J]. Rare Metal Materials and Engineering,2020,49(6):1984~1988.]
DOI:10.12442/j. issn.1002-185X.20190353

复制
文章指标
  • 点击次数:979
  • 下载次数: 1401
  • HTML阅读次数: 176
  • 引用次数: 0
历史
  • 收稿日期:2019-04-24
  • 最后修改日期:2019-06-27
  • 录用日期:2019-07-02
  • 在线发布日期: 2020-07-09