+高级检索
不同焊接速度6005A-T5铝合金搅拌摩擦焊接头的组织演变及力学性能研究
作者:
作者单位:

有研工程技术研究院有限公司

基金项目:

国家重点研发项目(2016YFB0300905, 2016YFB0300902)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用不同焊接速度对6005A-T5铝合金进行搅拌摩擦焊,对其焊接接头的组织和力学性能进行研究。建立了焊接接头不同区域析出相的演变和力学性能之间的关系。在焊接的过程中,焊核区由于受到了足够的热输入,β″相完全回溶到铝基体。在后续的自然时效过程中逐渐形成GP区,这也是焊核区硬度上升的主要原因。热力影响区发生不完全再结晶,晶粒呈现拉长状,同时有大量的位错形成。热影响区主要包含Q"相和 β″相。当焊接速度下降时,焊接接头的强度随着β″相的回溶和Q"相的形成逐渐降低。焊接接头纵向残余应力的平均值要大于横向残余应力。当焊接速度增加,纵向残余应力的峰值随之增加,但对横向残余应力的影响可以忽略。

    Abstract:

    The 6005A-T5 aluminum alloy welded joints are prepared by use of friction stir welding (FSW) at different welding speeds. The microstructure and mechanical properties of these joints have been investigated. The relationship between evolution of precipitates in different regions and the mechanical properties of welded joints is established. The β″ phases completely dissolve back into the aluminum matrix due to enough welding heat input in nugget zone (NZ) during the welding processing. GP zones are formed during the subsequent natural aging, which results in the hardness recovery of NZ. Incomplete recrystallization occurs in the ther-mo-mechanically affected zone (TMAZ), and the grains are elongated with high dislocation density. The heat affected zone (HAZ) contains Q" and β″ phases. With the decrease of welding speed, β″ phase gradually disappears and Q" phase is formed, which leads to a decrease in the strength of welded joints. The average value of longitudinal residual stress is higher than that of transverse residual stress. With the increase of welding speed, the peak longitudinal residual tensile stress increases, but the effect on the transverse residual tensile stress is negligible.

    参考文献
    1.Williams, James C, Starke, et al. Acta Materialia[J], 2003, 51(19):5775-5799.
    2.Edwards G A, Stiller K, Dunlop G L, et al. Acta Materialia[J], 1998,46(11):3893-3904.
    3.Pogatscher S, Antrekowitsch H, Leitner H, et al.Acta Materialia[J],2011,59(9):3352-3363.
    4.Dong P, Sun D, Li H.Materials Science and Engineering: A[J], 2013, 576:29-35.
    5.Miller W S, Zhuang L, Bottema J, et al.Materials Science and Engineering: A[J],2000,280(1):37-49.
    6.Yan Z, Liu X, Fang H.The International Journal of Advanced Manufacturing Technology[J],2017,91(9):3025-3031.
    7.Da Silva C L M, Scotti A.Journal of Materials Processing Technology[J],2006,171(3):366-372.
    8.Gou G, Zhang M, Chen H, et al.Materials Design[J], 2015,85:309-317.
    9.Wang X, Mao S, Chen P, et al.Materials Design[J], 2016,90:230-237.
    10.Liu H, Zhao Y, Hu Y, et al. The International Journal of Advanced Manufacturing Technology[J],2015,78(9):1415-1425.
    11.Mishra R S, Ma Z Y.Materials Science and Engineering: R: Reports[J],2005,50(1):1-78.
    12.Nandan R, DebRoy T, Bhadeshia H K D H.Progress in Materials Science[J], 2008,53(6):980-1023.
    13.Zhu S, Li Z, Yan L, et al.Journal of Alloys and Compounds[J], 2019,773:496-502.
    14.Zhu S, Li Z, Yan L, et al.Materials Characterization[J], 2018,145:258-267.
    15.Huis M A V, Chen J H, Zandbergen H W, et al.Acta Materialia[J],2006,54(11):2945-2955.
    16.Yang W, Wang M, Jia Y, et al.Metallurgical and Materials Transactions A[J], 2011,42(9):2917-2929.
    17.Tors?ter M, Lefebvre W, Marioara C D, et al.Scripta Materialia[J], 2011,64(9):817-820.
    18.Fallah V , Langelier B , Ofori-Opoku N , et al.Acta Materialia[J], 2016, 103:290-300.
    19.Ravi C, Wolverton C. Acta Materialia[J], 2004,52(14):4213-4227.
    20.Marioara C D, Andersen S J, Stene T N, et al.Philosophical Magazine[J], 2007,87(23):3358-3413.
    21.Chakrabarti D J , Laughlin D E. Progress in Materials Science[J], 2004,49(3):389-410.
    22.Sato Y S, Urata M, Kokawa H.Metallurgical and Materials Transactions A[J], 2002,33(3):625-635.
    23.Dong P, Li H, Sun D, et al. Materials Design[J], 2013,45:524-531.
    24.Steuwer A, Peel M J, Withers P J.Materials Science and Engineering: A[J], 2006,441(1-2):187-196.
    25.Lombard H, Hattingh D G, Steuwer A, et al.Materials Science and Engineering: A[J], 2009,501(1-2):119-124.
    26.Tanner D A, Robinson J S. Materials Science and Technology[J], 2016,32(14):1533-1543.
    27.Andersen S J, Zandbergen H W, Jansen J, et al.Acta Materialia[J], 1998,46(9):3283-3298.
    28.Gaber A, Ali A M, Matsuda K, et al. Journal of Alloys and Compounds[J], 2007,432(1):149-155.
    29.Liu S, Li K, Lu J, et al. Journal of Alloys and Compounds[J], 2018,745:644-650.
    30.Ding L , Jia Z , Nie J F , et al.Acta Materialia[J], 2018, 145:437-450.
    31.Zapata J, Toro M, López D. Journal of Materials Processing Technology[J], 2016,229:121-127.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘敬萱,沈健,李锡武,闫丽珍,闫宏伟,刘红伟,温凯,李志辉,张永安,熊柏青.不同焊接速度6005A-T5铝合金搅拌摩擦焊接头的组织演变及力学性能研究[J].稀有金属材料与工程,2019,48(12):3797~3805.[liujingxuan, Shenjian, Lixiwu, Yanlizhen, Yanhongwei, Liuhongwei, Wenkai, Lizhihui, Zhangyongan, Xiongbaiqing. Study on the microstructure evolution and mechanical properties of 6005A-T5 aluminum alloy FSW welded joints with different welding speeds[J]. Rare Metal Materials and Engineering,2019,48(12):3797~3805.]
DOI:10.12442/j. issn.1002-185X.20190432

复制
文章指标
  • 点击次数:890
  • 下载次数: 1583
  • HTML阅读次数: 171
  • 引用次数: 0
历史
  • 收稿日期:2019-05-22
  • 最后修改日期:2019-11-04
  • 录用日期:2019-06-14
  • 在线发布日期: 2020-01-07