+高级检索
单球撞击纯钛中的宏观和微观残余应力
作者单位:

西安建筑科技大学

基金项目:

陕西省重点研发计划(2017GY-115);陕西省教育厅科研项目(16JK1466)


Macroscopic and microscopic residual stress in single shot impacted pure titanium
Fund Project:

Key Research and Development Program of Shaanxi Province (No. 2017GY-115); Science and Technology Project of Education Department of Shaanxi Province (No. 16JK1466)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    采用有限元方法和弹塑性自洽模型模拟纯钛在单个钢球以不同尺寸和速度撞击时的力学响应,计算了宏观和微观残余应力。结果表明随着钢球尺寸和撞击速度的增加,宏观残余压应力增加。宏观残余应力和残余弹性应变具有较好的一致性。微观残余应力分布在一个随深度变化的范围内。在某一深度处微观残余应力的统计分布符合高斯分布,其离散程度由有效塑性应变决定。有效塑性应变随钢球尺寸和撞击速度变化。增加撞击速度和降低钢球尺寸,在某一深度处微观应力分布的标准差增加。

    Abstract:

    The finite element method (FEM) and elasto-plastic self-consistent (EPSC) method were used to simulate the mechanical response of pure titanium subjected to single steel shot impacting at different shot sizes and velocities. The macroscopic and microscopic residual stresses were calculated. The results indicate that the observed macroscopic residual compressive stress increases with an increase in the shot size and impacting velocity. In addition, the macroscopic residual stress calculations correlate well with the residual elastic strain. The microscopic residual stresses lie within a range that varies with depth. Furthermore, the statistical distribution of the microscopic residual stress agrees well with the Gaussian distribution. Additionally, the dispersion of microscopic residual stresses, determined by the effective plastic deformation, is influenced by the shot size and impacting velocity. With an increase in the impacting velocity and decrease in the shot size, the standard deviation of the microscopic residual stresses at a certain depth increases.

    参考文献
    1Hauk V. Structural and Residual Stress Analysis by Nondestructive Methods[M]. Amsterdam: Elsevier Science B.V., 1997, 59
    2Wang Y D, Peng R L, Wang X L et al. Acta Materialia[J], 2002, 50(7): 1717
    3Withers P J. Reports on Progress in Physics[J], 2007, 70(12): 2211
    4Wang S P, Li Y J, Yao M et al. Journal of Materials Processing Technology[J], 1998, 73(1–3): 64
    5Gao Y K, Yao M, Li J K. Metallurgical and Materials Transactions A[J], 2002, 33(6): 1775
    6Zhang X C, Zhang Y K, Lu J Z et al. Materials Science and Engineering A[J], 2010, 527(15): 3411
    7Maawad E, Sano Y, Wagner L et al. Materials Science and Engineering A[J], 2012, 536: 82
    8Sun R J, Li L H, Zhu Y et al. Modelling and Simulation in Materials Science and Engineering[J], 2017, 25(6): 065016
    9Wang Y M, Yang H P, Zhang C H et al. Metals and Materials International[J], 2015, 21(2): 260
    10Zhou J, Retraint D, Sun Z et al. Surface and Coatings Technology[J], 2018, 349: 556
    11Xin C, Sun Q Y, Xiao L et al. Journal of Materials Science[J] 2018, 53(17): 12492
    12Wang T, Wang D P, Liu G et al. Applied Surface Science[J], 2008, 255(5): 1824
    13Webster G A, Ezeilo A N. International Journal of Fatigue[J], 2001, 23(S1): 375
    14Wang Y M, Cheng J P, Zhang C H. Rare Metal Materials and Engineering[J], 2019, 48(8): 2574
    15Steuwer A, Hattingh D G, James M N et al. Science and Technology of Welding and Joining[J], 2012, 17(7): 525
    16Wang Y M, Zhuang W, Yang H P et al. Rare Metals[J], 2019, 38(9): 824
    17Ma Z S, Zhou Y C, Long S G et al. Surface and Coatings Technology[J], 2012, 207: 305
    18Totten G, Howes M, Inoue T. Handbook of Residual Stress and Deformation of Steel[M]. Materials Park, ASM International, 2002, 11
    19Withers P J, Bhadeshia H K D H. Materials Science and Technology[J], 2001, 17(4): 355
    20Sticchi M, Schnubel D, Kashaev N et al. Applied Mechanics Reviews[J], 2015, 67(1): 010801
    21Archie F, Mughal M Z, Sebastiani M et al. Acta Materialia[J], 2018, 150: 327
    22Kwon E P, Sato S, Fujieda S et al. Materials Science and Engineering A[J], 2013, 570: 43
    23Gloaguen D, Oum G, Legrand V et al. Metallurgical and Materials Transactions A[J], 2015, 46(11): 5038
    24Everaerts J, Salvati E, Uzun F et al. Acta Materialia[J], 2018, 156: 43
    25Field D P, Magid K P, Mastorakos I N et al. Philosophical Magazine[J], 2010, 90(11): 1451
    26Mikami Y, Oda K, Kamaya M. et al. Materials Science and Engineering A[J], 2015, 647: 256
    27Meguid S A, Shagal G, Stranart J C et al. Finite Elements in Analysis and Design[J], 1999, 31(3): 179
    28Turner P A, Christodoulou N, Tomé C N. International Journal of Plasticity[J], 1995, 11(3): 251
    29Cai S, Daymond M R, Holt R A. Acta Materialia[J], 2009, 57(2): 407
    30Kaboli S, Burnley P C. Materials Science and Engineering A[J], 2019, 739: 99
    31Neil C J, Wollmershauser J A, Clausen B et al. International Journal of Plasticity[J], 2010, 26(12): 1772
    32Gloaguen D, Fajoui J, Girault B. Acta Materialia[J], 2014, 71: 136
    33Jia N, Peng R L, Wang Y D et al. Acta Materialia[J], 2006, 54(15): 3907
    34Gloaguen D, Berchi T, Girard E et al. Acta Materialia[J], 2007, 55(13): 4369
    35Bozzolo N, Dewobroto N, Wenk H R et al. Journal of Materials Science[J], 2007, 42(7): 2405
    36Gurao N P, Kapoor R, Suwas S. Acta Materialia[J], 2011, 59(9): 3431
    37Guo X D, Seefeldt M. Journal of Materials Science[J], 2017, 52(13): 8132
    38Wronski M, Kumar M A, Capolungo L et al. Materials Science and Engineering A[J], 2018, 724: 289
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王耀勉,杨换平,庄唯,剡文斌.单球撞击纯钛中的宏观和微观残余应力[J].稀有金属材料与工程,2020,49(10):3369~3376.[Wang Yaomian, Yang Huanping, Zhuang Wei, Yan Wenbin. Macroscopic and microscopic residual stress in single shot impacted pure titanium[J]. Rare Metal Materials and Engineering,2020,49(10):3369~3376.]
DOI:10.12442/j. issn.1002-185X.20190734

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-09-09
  • 最后修改日期:2019-11-15
  • 录用日期:2019-11-19
  • 在线发布日期: 2020-11-04