+高级检索
TC4钛合金局部感应加热刚性拘束热自压扩散连接与机理分析
作者:
作者单位:

1.北京石油化工学院;2.中国航空制造技术研究院

基金项目:

the National Natural Science Foundation of China (No.51705491).


Study on rigid restraint thermal self-compressing bonding of Ti6Al4V alloy by local induction heating
Fund Project:

the National Natural Science Foundation of China (No.51705491).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出了一种新型扩散连接方法——局部感应加热刚性拘束热自压扩散(TSCB)。利用TC4板材进行了实验,验证了局部感应加热刚性拘束热自压扩散方法的可行性。在实验基础上建立了感应加热刚性拘束热自压扩散过程热应力应变有限元分析模型,揭示了钛合金局部感应加热刚性拘束热自压扩散连接机理。实验结果表明,感应加热刚性拘束热自压扩散原理可行,接头显微组织均匀,综合力学性能较好。热应力应变过程有限元数值分析表明,在刚性拘束的待连接材料对接区域进行局部感应加热时,界面附近形成热拘束应力应变场,对界面处高温热塑性状态金属进行热挤压,促进界面两侧原子扩散,最终实现了固相连接。

    Abstract:

    Rigid restraint thermal self-compressing bonding (TSCB) by localized induction heating, a new diffusion bonding technology was proposed in this paper. Experiments were conducted on Ti6Al4V plates to prove the feasibility of rigid restraint thermal self-compressing bonding by local induction heating. Moreover, finite element analysis was employed to numerically investigate the thermal elastic-plastic stress-strain cycle during thermal self-compressing bonding by localized induction heating. Results show that solid-state joint with homogeneous microstructure and excellent mechanical properties was attained. By localized induction heating, an internal elasto-plastic stress-strain field is developed which makes the bond interface subjected to thermal compressive action. This thermal self-compressing action combined with the high temperature on the bond interface promotes the atom diffusion across the bond interface to produce solid-state joints.

    参考文献
    [1] Arrieta J., Striz A. J., Optimal Design of Aircraft Structures with Damage Tolerance Requirements.Structural and Multidisciplinary Optimization, 2005, 30: 155 ~163.
    [2] Xiangming W, Weiting L, Design and application of titanium alloy structure for aircraft. Beijing:National Defense Industry Press, 2010.
    [3] Huda Z., Edi P., Materials selection in design of structures and engines of supersonic aircrafts: A review. Materials Design, 2013, 46: 552–560.
    [4] Williams J. C., Starke E A., Progress in structural materials for aerospace systems. Acta Materialia , 2003, 51(19): 5775–5799.
    [5] Soutis C., Fiber reinforced composites in aircraft construction. Progress in Aerospace Sciences, 2005, 41(2): 143–151.
    [6] Huda Z., Zaharinie T., Min G. J., Temperature effects on material behavior of aerospace aluminum alloys for subsonic and supersonic aircrafts. Journal of Aerospace Engineering, 2010, 23(2): 124–128
    [7]Fang Lianjun, Han Tiantian, Tan weilong, Welding Technology Applications of T-itanium Alloy in Aerospace, China New Technology and New Products 2014(06)
    [8]Gao Wenjing, Lei Junxiang, Application and Research Progress of Diffusion Bonding Technology in Titanium Alloy Processing, Non-ferrous Metal Materials and Engineering 2017(08)
    [9] Huang J. L., Warnken N., Gebelin J. C., On the Mechanism of Porosity Formation During Welding of Titanium Alloys. Acta Materialia, 2012, 60:3215–3225.
    [10] Huiqiaing W, Jicai W, Jingshan H, Fracture behavior mechanism of Ti-6Al-4V joint welded by electron beam. Journal of Welding, 2004,25(4): 59-62.
    [11] Liu J., Gao X. L., Zhang L. J., Effects of the Heterogeneity in the Electron Beam Welded Joint on Mechanical Properties of Ti6Al4V Alloy. Journal of Materials Engineering and Performance, 2015, 24(1):319-328.
    [12] Liu H. J., Feng X. L., Study of Diffusion Bonding of Fine Grain TC21 Titanium alloy. Rare Metal Materials and Engineering,2009,38(9): 1509?1513.
    [13] Cam G., Kocak M., Progress in Joining of Advanced Materials: Part 1 Solid State Joining, Fusion Joining, and Joining of Intermetallics. Science and Technology of Welding and Joining, 1998, 3(3): 105-124.
    [14] Xiufeng Han, Lu Zhang, Linyi Qian, Solid state welding technology and its application in civil aviation engines. Aviation manufacturing technology, 2012, (13): 55-58.
    [15] Kurt B., Orhan N., Evin E., Diffusion Bonding Between Ti6Al4V and Ferritic Stainless Steel. Materials letters, 2007, 61: 1747-1750.
    [16] Wang X. R., Yang Y. Q., Luo X., An Investigation of Ti43Al9V/Ti6Al4V Interface by Diffusion Bonding. Intermetallics, 2013, 36:127-132.
    [17] Yunhua Deng,SQiao Guan,SBing Wu,SXichang Wang,SJun Tao, Study on rigid restraint thermal self-compressing bonding – A new solid state bonding method, Materials Letters 2014,43~45
    [18] Yunhua Deng,SQiao Guan, Rigid restraint thermal self-compressing bonding of pure titanium to titanium alloy. Materials Letters 2015, 1~3
    [19] Yunhua Deng,SQiao Guan,SBing Wu,SJun Tao, A comparative study on electron beam welding and rigid restraint thermal self-compressing bonding for Ti6Al4V alloy. Vacuum 2015, 17~22
    [20] Ning Sun, Application of induction heating brazing technology, Metal Processing 2010, 24: 47~49
    [21] Juan Wang, Qiang Liu et al, Brazing and diffusion welding technology, Chemical Industry Press, 2012
    [22] C.H.Hamilton, Titanium Science and Technology, New York: Plenum Press, 1973: 625
    [23] A. Hill, E. R. Wallach, Modeling Solid-State Diffusion Bonding, Acta Metall, 1989, 37 (9): 2425~243
    [24] M.F.Ashby, Acta metall, 22, 275 (1974)[9] D.S. Wilkinson, M.F. Ashby, Acta metall, 23, 1277 (1975)
    [25] Y.Takahashi, K.Takahashi,K.Nishiguchi.A Numerical Analysis of Void Shrinkage Processes Controlled by Coupled Surface and Interface Diffusion. Acta Metallurgica et Materialia. 1991, 39 (12): 3199~3216
    [26] Y. Takahashi, K. Inoue. Recent Void Shrinkage Models and their Applicability to Diffusion Bonding. Materials Science and Technology. 1992, 8(11):953~964
    [27] Y. Takahashi, T. Koguchi, K. Nishiguchi. Modeling of Viscoplastic Adhering Process by a Finite Element Technique. Journal of Engineering Materials and Technology. 1993, 115(1): 150~155
    [28] N. Orhan, M. Aksoy, M. Eroglu. A new Model for Diffusion Bonding and its Application to Duplex Alloys. Materials Science and Engineering A. 1999, 271(1-2): 458~468
    [29] Ruifang Ma, Yiquan Li, Hong Li, Weixin Yu,Modeling of void closure in diffusion bonding process based on dynamic conditions. Science China Technological Sciences 2012, 55(9)
    [30] Junjun Shen, Characteristics of diffusion interface of TC4 titanium alloy and numerical simulation of void closure, Harbin Institute of Technology 2007
    [31] Zhengfeng Qi, etc, Diffusion and phase transition in solid metal. Beijing : Mechanical Industry Press, 1998
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

潘睿,邓云华,张华. TC4钛合金局部感应加热刚性拘束热自压扩散连接与机理分析[J].稀有金属材料与工程,2021,50(2):373~379.[Pan Rui, Deng Yunhua, Zhang Hua. Study on rigid restraint thermal self-compressing bonding of Ti6Al4V alloy by local induction heating[J]. Rare Metal Materials and Engineering,2021,50(2):373~379.]
DOI:10.12442/j. issn.1002-185X.20200007

复制
文章指标
  • 点击次数:1199
  • 下载次数: 1512
  • HTML阅读次数: 168
  • 引用次数: 0
历史
  • 收稿日期:2020-01-04
  • 最后修改日期:2020-03-31
  • 录用日期:2020-04-02
  • 在线发布日期: 2021-03-09