+高级检索
热处理和熔炼方式改变对AlCoCrFeNiTi0.2高熵合金的影响
作者单位:

北京科技大学


Effect of heat treatment and melting method changing on AlCoCrFeNiTi0.2 high entropy alloy
Author:
Affiliation:

University of Science and Technology Beijing

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用电弧熔炼方法设计制备了AlCoCrFeNiTi0.2合金,发现铸态时的合金形成了B2相和BCC相,且室温压缩性能良好,压缩塑性为32.6%,屈服强度为1530.4 MPa,抗压强度为4035.0 MPa,硬度接近600 HV。在550℃、800℃和1050℃对其进行热处理,采用水冷的方式以保存高温相,三个温度对应的相组成分别为BCC+B2、BCC+B2+FCC+σ和BCC+B2+FCC,热处理后合金脆性和硬度升高。采用磁悬浮熔炼制备了大块AlCoCrFeNiTi0.2合金,该合金成分分布比较均匀,形成了BCC+B2+σ三相,在600℃时压缩塑性为35.0%,且仍能保持1486.7 MPa的屈服强度,耐高温性能较好。

    Abstract:

    The AlCoCrFeNiTi0.2 alloy was designed and prepared by the arc melting method. It was found that the as-cast alloy formed the B2 phase and the BCC phase, and showed good room temperature compressibility, compressive plasticity of 32.6%, yield strength of 1530.4 MPa, and compressive strength of 4035.0 MPa. The hardness is about 600 HV. It was heat-treated at 550°C, 800°C and 1050°C, and the high-temperature phase was preserved by water cooling. The phase composition corresponding to the three temperatures was BCC + B2, BCC + B2 + FCC + σ, and BCC + B2 + FCC. The brittleness and hardness of the alloy increase after heat treatment. A bulk AlCoCrFeNiTi0.2 alloy was prepared by magnetic levitation melting. The alloy has a relatively uniform composition distribution, forming a BCC + B2 + σ three-phase structure. The compressive plasticity is 35.0% at 600°C, and it can still maintain a yield strength of 1486.7 MPa which is good at high temperature.

    参考文献
    参考文献 References
    [1] Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials [J], 2004, 6(5): 299-303.
    [2] Zhang Y. High-Entropy Materials: A Brief Introduction[M]. Switzerland: Springer-Nature, 2019: 1-152.
    [3] Sun Y Z (孙永哲), Tian X (田笑), Wei Y F (魏亚风), et al. Transactions of Materials and Heat Treatment(材料热处理学报)[J], 2017, 38(9): 18-23.
    [4] Munitz A, Salhov S, Hayun S, et al. Journal of Alloys and Compounds[J], 2016, 683: 221-230.
    [5] Lu Y, Dong Y, Guo S, et al. Sci Rep[J], 2014, 4: 6200.
    [6] Zhou Y J, Zhang Y, Wang Y L, et al. Applied Physics Letters[J], 2007, 90(18): 181904.
    [7] Wang R, Zhang K, Davies C, et al. Journal of Alloys and Compounds[J], 2017, 694: 971-981.
    [8] Wang W R, Wang W L, Yeh J W. Journal of Alloys and Compounds[J], 2014, 589: 143-152.
    [9] Xun H J (徐恒钧). Materials Science Foundation (材料科学基础) [M]. Beijing: Chemical Industry Press, 2001: 1-427.
    [10] Zhu J M, Fu H M, Zhang H F, et al. Journal of Alloys and Compounds[J], 2011, 509(8): 3476-3480.
    [11] Qiushi C, Yong D, Junjia Z, et al. Rare Metal Materials and Engineering[J], 2017, 46(3): 651-656.
    [12] Zhu J M, Fu H M, Zhang H F, et al. Materials Science Engineering A[J], 2010, 527(27): 7210-7214.
    [13] Dong Y, Zhou K, Lu Y, et al. Materials Design[J], 2014, 57: 67-72.
    [14] Chen J, Niu P, Liu Y, et al. Materials Design[J], 2016, 94: 39-44.
    [15] Zhu J M, Meng J L, Liang J L. Rare Metals[J], 2016, 35(5): 385-389.
    [16] Zhu J M, Fu H M, Zhang H F, et al. Materials Science and Engineering A[J], 2010, 527(26): 6975-6979.
    [17] Ma S G, Zhang Y. Materials Science and Engineering A[J], 2012, 532: 480-486.
    [18] Zhou Y J (周云军), Zhang Y (张勇), Wang Y L (王艳丽), et al. Chinese Journal of Materials Research(材料研究学报)[J], 2008, 22(5): 461-466.
    [19] Hsieh C-C, Wu W. ISRN Metallurgy[J], 2012, 2012: 1-16.
    [20] Zhao Z Y (赵志毅), Xu L (徐林), Li G P (李国平), et al. Transactions of Materials and Heat Treatment(材料热处理学报) [J], 2010, 31(10): 75-79.
    [21] Chen T H, Yang J R. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing[J], 2001, 311(1-2): 28-41.
    [22] Wang F J, Zhang Y, Chen G L, et al. Journal of Engineering Materials and Technology-Transactions of the Asme[J], 2009, 131(3): 3.
    [23] Senkov O N, Wilks G B, Scott J M, et al. Intermetallics[J], 2011, 19
    [24] Li C L (李春玲), Ma Y (马跃), Hao J M (郝家苗), et al. Journal of Netshape Forming Engineering(精密成形工程)[J]. 2017, 06: 127-134.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张璐,张勇.热处理和熔炼方式改变对AlCoCrFeNiTi0.2高熵合金的影响[J].稀有金属材料与工程,2021,50(1):263~270.[Zhang Lu, Zhang Yong. Effect of heat treatment and melting method changing on AlCoCrFeNiTi0.2 high entropy alloy[J]. Rare Metal Materials and Engineering,2021,50(1):263~270.]
DOI:10.12442/j. issn.1002-185X.20200012

复制
文章指标
  • 点击次数:897
  • 下载次数: 1431
  • HTML阅读次数: 164
  • 引用次数: 0
历史
  • 收稿日期:2020-01-06
  • 最后修改日期:2020-04-19
  • 录用日期:2020-04-26
  • 在线发布日期: 2021-02-05