+高级检索
Si、Mn元素对奥氏体不锈钢微观组织和拉伸性能的影响
作者:
作者单位:

1.沈阳工业大学 材料科学与工程学院;2.中广核研究院有限公司;3.中国科学院金属研究所 核用材料与安全评价重点实验室

基金项目:

辽宁省自然科学基金(2019-BS-248)


Effect of Si and Mn on Microstructure and Tensile Properties of Austenitic Stainless Steel
Author:
Affiliation:

1.School of Materials Science and Engineering Shenyang University of Technology;2.China Nuclear Power Technology Research Institute;3.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为提高奥氏体不锈钢耐蚀性,合金中可同时加入Si、Mn元素,提高合金氧化膜形成能力同时增加奥氏体基体稳定性,但Si、Mn的添加还能够对合金的冷变形组织和力学性能产生影响。本研究设计了不同硅、锰含量的奥氏体不锈钢,采用SEM、EPMA以及TEM等方法表征合金显微组织形貌,采用室温拉伸分析合金的力学性能。结果表明,Si含量由1.0 wt.%提高至2.0 wt.%,20% 冷变形合金组织中变形孪晶体积分数由4.98 %增加至8.33 %,合金屈服强度由620 MPa提高至682 MPa,延伸率基本保持不变;Mn元素由1.5 wt.%提高至2.0 wt.%,变形孪晶体积分数由8.33 %减少至7.22 %,屈服强度由682 MPa降低至627 MPa,延伸率由16.0%增加至21.3 %;添加 Si元素,合金中孪晶数量增加,合金强度提高并保持塑性;添加Mn元素,合金中孪晶数量减少,强度降低塑性增强。

    Abstract:

    Si and Mn are usually added into austenitic stainless steels to improve their corrosion resistance by improving the oxide film forming ability and increasing the stability of austenite matrix. However, the additions of Si and Mn can significantly affect the microstructure and mechanical properties of the cold-worked material. In this study, austenitic stainless steels with different Si and Mn contents are designed. The microstructure of the alloys is characterized by SEM, EPMA, and TEM, and the mechanical properties are evaluated by tensile tests at room temperature. As Si increases from 1.0 wt.% to 2.0 wt.%, the volume fraction of deformation twins increases from 4.98% to 8.33%, the yield strength increases from 620MPa to 682 MPa, and the elongation basically remains constant; as Mn increases from 1.5 wt.% to 2.0 wt.%, the volume fraction of the deformation twins decreases from 8.33% to 7.22%, the yield strength decreases from 682MPa to 627 MPa, and the elongation increases from 16.0% to 21.3 %; Si addition increases the quantity of deformation twins in the alloy, improves the strength of the alloy and maintains plasticity; Mn addition reduces the number of the deformation twins in the alloy, reduces the strength of the alloy and enhances plasticity.

    参考文献
    [1] Abram T and Ion S. Energy Policy[J], 2008, 36(12): 4323-4330
    [2] Ichimiya M, Mizuno T and Kotake S. Nucl. Eng. Technol.[J], 2007, 39(3): 171-186
    [3] Raj B, Mannan S L, Rao P R V, et al. Sadhana[J], 2002, 27(5): 527-558
    [4] Lo K H, Shek C H and Lai J K L. Recent developments in stainless steels [J]. Mater. Sci. Eng., R, 2009, 65(4): 39-104
    [5] Cautaerts N, Delville R, Dietz W, et al. J. Nucl. Mater[J]., 2017, 493: 154-167
    [6] Ha V T and Jung W S. Mater. Sci. Eng., A[J], 2011, 528(24): 7115-7123
    [7] Li H, Bai P, Lin Z, et al. Fusion Eng. Des. [J], 2017, 125: 384-390
    [8] Huang Q Y, Wu Y C, Li J G, et al. J. Nucl. Mater. [J], 2009, 386-388: 400-404
    [9] Gong X, Li R, Sun M, et al. J. Nucl. Mater.[J], 2016, 482: 218-228
    [10] Gromov B F, Belomitcev Y S, Yefimov E I, et al. Nucl. Eng. Des. [J], 1997, 173(1): 207-217
    [11] Tu?ek K, Carlsson J and Wider H. Nucl. Eng. Des. [J], 2006, 236(14-16): 1589-1598
    [12] Kurata Y and Futakawa M.J. Nucl. Mater. [J], 2004, 325(2): 217-222
    [13] Kondo M and Takahashi M. J. Nucl. Mater. [J], 2006, 356(1): 203-212
    [14] Mart??n F J, Soler L, Hernández F, et al. J. Nucl. Mater. [J], 2004, 335(2): 194-198
    [15] Dong H(董红). Investigation on the compatibility of a high silicon content ferritic/martensitic steel with liquid lbe(高Si含量铁素体/马氏体钢与液态铅铋共晶合金相容性研究) [D]. Shenyang: Institute of Metal Research Chinese Academy of Sciences
    [16] Zhang C(张晨), Study on process of grain refining and its effect on microstructure and mechanical properties of high silicon austenitic stainless steel castings(铸造高硅奥氏体不锈钢晶粒细化及对组织性能影响研究) [D]. Harbin: Harbin institute of technology, 2016
    [17] Zhang R X(张汝娴), Xie G S(谢光善). Fast neutron reactor fuel element(快中子堆燃料元件) [M]. Beijing: Chemical industry press, 2007
    [18] Rémy L. Metall. Trans. A[J], 1981, 12(3): 387-408
    [19] Brofman P J and Ansell G S. Metall. Trans. A[J], 1978, 9(6): 879-880
    [20] Xiong R, Peng H, Wang S, et al. Mater.?Des.[J], 2015, 85: 707-714
    [21] Li D, Feng Y, Song S, et al. J. Alloys Compd.[J], 2015, 618: 768-775
    [22] Shi X, Liang Y, Liu B, et al. Mater. Sci. Eng., A[J], 2019, 762: 138095
    [23] Jeong K, Jin J-E, Jung Y-S, et al. Acta Mater.[J], 2013, 61(9): 3399-3410
    [24] Cui J Q(崔继强). Determination of al and ti in quartz by electron probe microanalysis(电子探针测试石英中Al和Ti含量的研究) [D]. Wuhan: China university of geosciences, 2019
    [25] Yang D Z(杨德庄). Dislocation and strengthening mechanisms of metals(位错与金属强化机制) [M]. Harbin: institute of technology press, 1991
    [26] Hu G X(胡赓祥), Cai X(蔡洵), Rong Y H(戎咏华). Fundamentals of materials science(材料科学基础) [M]. Shanghai: Shanghai jiao tong university press, 2000
    [27] Allain S, Chateau J P, Bouaziz O, et al. Mater. Sci. Eng., A[J], 2004, 387-389: 158-162
    [28] Lehnhoff G R, Findley K O and De Cooman B C. Scripta Mater.[J], 2014, 92: 19-22
    [29] Shu D L(束德林). Mechanical properties of engineering materials(工程材料力学性能) [M]. Beijing: China machine press, 2014
    [30] Liang X, McDermid J R, Bouaziz O, et al. Acta Mater.[J], 2009, 57(13): 3978-3988
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陆成旭,易昊钰,梁田,王旻,薛海龙,马颖澈,刘奎. Si、Mn元素对奥氏体不锈钢微观组织和拉伸性能的影响[J].稀有金属材料与工程,2021,50(1):187~194.[LU Chengxu, YI Haoyu, LIANG Tian, WANG Min, XUE Hailong, MA Yingche, LIU Kui. Effect of Si and Mn on Microstructure and Tensile Properties of Austenitic Stainless Steel[J]. Rare Metal Materials and Engineering,2021,50(1):187~194.]
DOI:10.12442/j. issn.1002-185X.20200044

复制
文章指标
  • 点击次数:1063
  • 下载次数: 1950
  • HTML阅读次数: 174
  • 引用次数: 0
历史
  • 收稿日期:2020-01-17
  • 最后修改日期:2020-04-16
  • 录用日期:2020-04-17
  • 在线发布日期: 2021-02-05