+高级检索
脉冲电沉积SiC/TiN颗粒增强Ni-Mo纳米复合镀层研究
作者:
作者单位:

长安大学材料科学与工程

作者简介:

通讯作者:

中图分类号:

TG146.2+1;TG174.441;

基金项目:

中国留学基金委“青年学者出国留学计划”(201906565024),国家自然科学(51301021),中国博士后科学基金(2016M592730),中央大学基本科研业务费专项基金(300102318205; 310831161020; 310831163401; 300102319304),长安大学创新与创业培训计划(201910710144),陕西省自然科学基金重点项目(2019JZ- 27),陕西省陕煤联合(2019JLM-47)


Pulse electrodeposition of SiC/TiN particles Reinforced Ni-Mo nanocomposite coating studies
Author:
Affiliation:

School of Materials Science and Engineering,Chang’an University,Xi’an

Fund Project:

Young Scholar sponsored by CSC (China Scholarship Council) (No. 201906565024), National Natural Science Foundation of China (No. 51301021), China Postdoctoral Science Foundation (No. 2016M592730), Fundamental Research Funds for the Central Universities (No. 300102318205; 310831161020; 310831163401; 300102319304), Innovation and Entrepreneurship Training Program of Chang

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    铝合金表面防护涂层的设计和制备是提升铝合金部件表面硬度、耐蚀性的主要方法之一。本文采用脉冲电沉积技术在6061铝合金表面制备SiC/TiN颗粒增强Ni-Mo纳米复合镀层。通过在镀层中引入SiC、TiN纳米颗粒并改变电沉积的平均电流密度和占空比,调控复合镀层的微结构,探讨纳米颗粒增强涂层的成膜过程与晶粒细化机理,研究复合镀层的组织结构与耐蚀性、耐磨性的关系。结果表明:双纳米颗粒的加入使镀层结构由锥状向胞状转变,晶粒尺寸由29.86 nm减小至22.79 nm。其中在电流密度为8 A·dm-2,占空比为20%时制备的镀层最为均匀致密且SiC/TiN颗粒复合量最高,分别为1.3 wt%和3.1 wt%。镀层具有典型的FCC结构且呈现出(111)择优取向,纳米颗粒均匀分散在Ni-Mo基体中。Tafel极化和浸泡试验研究表明Ni-Mo复合镀层的腐蚀电流密度为7.08 μA/cm2,相比之下在电流密度为4 A·dm-2、8 A·dm-2和12 A·dm-2和占空比为40%、60%下制备的Ni-Mo/SiC-TiN纳米复合镀层腐蚀电流密度分别为4.68 μA/cm2、4.12 μA/cm2、5.75 μA/cm2、4.37 μA/cm2和5.53 μA/cm2,分别降低了34%、42%、19%、38%和21%。研究发现在电流密度为8 A·dm-2,占空比为20%下制备的纳米复合镀层表现出最好的耐蚀性。与Ni-Mo镀层相比,SiC/TiN颗粒的引入显著的提升了镀层耐磨性。此外,本文对脉冲共沉积机理进行了讨论。

    Abstract:

    The design and preparation of aluminum alloy surface protective coating is one of the main methods to improve the surface hardness and corrosion resistance of aluminum alloy components. In this paper, a SiC/TiN particle reinforced Ni-Mo nanocomposite coating was prepared on the surface of 6061 aluminum alloy by pulse electrodeposition technique. By introducing SiC and TiN nanoparticles into the coating and changing the average current density and duty cycle of electrodeposition, the microstructure of the composite coating was adjusted, the film formation process and grain refinement mechanism of the nanoparticle-enhanced coating were analyzed. The relationship between the microstructure of composite coating and the corrosion resistance and wear resistance was studied. The results showed that the addition of double nanoparticles resulted in a shift of the coating structure from conical to cellular, and the grain size was reduced from 29.86 nm to 22.79 nm. The coatings prepared at current density of 8 A·dm-2 were the most homogeneous and dense with the highest SiC/TiN particle complexes of 1.3 wt% and 3.1 wt%, respectively. The coating exhibits (111) preferred orientation and typical FCC structure, with nanoparticles uniformly dispersed in a Ni-Mo matrix. The corrosion behavior of the coatings was investigated by Tafel polarization and immersion test. Compared with the corrosion current density of Ni-Mo composite coating of 7.08 μA/cm2, Ni-Mo/SiC-TiN nanocomposite coatings prepared at current densities of 4 A·dm-2, 8 A·dm-2, 12 A·dm-2 and duty cycle of 40% and 60% was 4.68 μA/cm2, 4.12 μA/cm2, 5.75 μA/cm2, 4.37 μA/cm2 and 5.53 μA/cm2, which were reduced by 34%, 42%, 19%, 38% and 21% respectively. In particular, the nanocomposite coatings prepared at the current density of 8 A·dm-2 and the duty cycle of 20% exhibited the best corrosion resistance. Compared with Ni-Mo coating, the introduction of SiC/TiN particles significantly improves the wear resistance of the coating. In addition, the mechanism of pulsed co-deposition is discussed in this paper.

    参考文献
    相似文献
    引证文献
引用本文

徐义库,范铭远,罗宇晴,赵秦阳,陈永楠,郝建民.脉冲电沉积SiC/TiN颗粒增强Ni-Mo纳米复合镀层研究[J].稀有金属材料与工程,2021,50(5):1656~1664.[Yiku Xu, Mingyuan Fan, Yuqing Luo, Qinyang Zhao, Yongnan Chen, Jianmin Hao. Pulse electrodeposition of SiC/TiN particles Reinforced Ni-Mo nanocomposite coating studies[J]. Rare Metal Materials and Engineering,2021,50(5):1656~1664.]
DOI:10.12442/j. issn.1002-185X.20200378

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-06-01
  • 最后修改日期:2020-07-30
  • 录用日期:2020-08-04
  • 在线发布日期: 2021-06-09
  • 出版日期: 2021-05-25