+高级检索
钼表面包埋渗法制备(Ti, Mo)Si2/MoSi2 涂层及其在1200 ℃周期性氧化环境下的氧化行为
作者:
作者单位:

1.重庆材料研究院有限公司,重庆 400707;2.国家仪表功能材料工程技术研究中心,重庆 400707;3.重庆理工大学 化学化工学院,重庆 400054

作者简介:

通讯作者:

中图分类号:

基金项目:

重庆市基础研究与前沿探索(cstc2019jcyj-msxm2574),核电重大科技专项(2017ZX06004004),北碚区技术创新与应用示范类项目(2020-4)


In-situ Fabrication of (Ti, Mo)Si2/MoSi2 Composite Coating to Protect Mo Substrate Against Cyclic Oxidation at 1200 °C
Author:
Affiliation:

1.Chongqing Materials Research Institute Co., Ltd, Chongqing 400707, China;2.National Engineering Research Center for Instrument Function Materials, Chongqing 400707, China;3.School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China

Fund Project:

Sponsored by Basic Research and Frontier Exploration of Chongqing (cstc2019jcyj-msxmX0795); Major Science and Technology Projects of Nuclear Power (2017ZX06004004); Technology Innovation and Application Demonstration Project of Beibei (2020-4)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用连续沉积的包埋渗法,在钼表面制备了(Ti,Mo)Si2/MoSi2复合涂层。利用X射线衍射、扫描电子显微镜、能谱仪和热力学计算对涂层进行了表征与反应机理分析。结果表明,共沉积法无法实现Ti的有效沉积。先渗Ti、再渗Si的两步沉积工艺能有效制备Ti改性硅化物涂层。涂层分为3层,最外层为(Ti,Mo)Si2三元化合物层,次外层为MoSi2层,次外层与基体间为Mo5Si3过渡层。渗硅温度对涂层结构无明显影响。Ti改性硅化物涂层的生长速率略低于单一渗硅涂层的生长速率。(Ti,Mo)Si2/MoSi2复合涂层的形成由Ti、Si内扩散控制。Ti元素集中在涂层表层,Si元素通过(Ti,Mo)Si2化合物层与基体作用形成MoSi2层和Mo5Si3过渡层。渗Ti过程中,埋渗料间反应会引入游离态铝氟化物AlF3。在随后的渗硅过程中,游离态Al以Al3Mo的形式在(Ti,Mo)Si2层中靠近MoSi2层的上界面处析出。在1200 ℃周期性氧化过程中,(Ti,Mo)Si2/MoSi2复合涂层持续循环氧化180 h后未出现明显失重。(Ti,Mo)Si2层氧化形成的SiO2与TiO2致密复合氧化层能填充涂层表面裂纹,持续阻碍氧扩散,因此其在周期性氧化环境下的抗氧化性能显著优于单一渗硅涂层。

    Abstract:

    (Ti, Mo)Si2/MoSi2 composite coatings were prepared on Mo substrate by the continuous deposition pack cementation method. The X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and thermody-namic calculation were used to characterize the composite coatings and to analyze the formation mechanism. The results show that the co-deposition process cannot achieve the titanium deposition effectively. The titanium-modified MoSi2 coatings can be prepared by a two-step deposition process of titanizing and siliconizing. The coatings contain three layers: the outer layer is (Ti, Mo)Si2 ternary compound layer; the second layer is MoSi2 layer; the layer between the MoSi2 and Mo substrate is the Mo5Si3 transition layer. The siliconizing temperature shows negligible effect on coating structure. The growth rate of titanium-modified MoSi2 coating is slightly lower than that of single MoSi2 coating. The growth of (Ti, Mo)Si2/MoSi2 composite coating is dominated by the inward diffusion of Ti and Si. Ti is concentrated on the outer layer of the coating. Si diffuses through the (Ti, Mo)Si2 compound layer and interacts with the substrate to form the MoSi2 layer and Mo5Si3 transition layer. In the titanizing process, the free state AlF3 is introduced by the reaction among pack mixtures. In the subsequent siliconizing process, a trace amount of Al in free state is precipitated in the form of Al3Mo phases in the (Ti, Mo)Si2 layer near the upper interface of MoSi2 layer. During the cyclic oxidation tests at 1200 °C, the (Ti, Mo)Si2/MoSi2 composite coatings do not lose mass obviously after exposure in oxidation atmosphere for 180 h. A dense composite oxide layer consisting of SiO2 and TiO2 can be formed by the oxidation of (Ti, Mo)Si2 phase. This composite oxide layer can fill the surface cracks of the coating and continuously block the oxygen diffusion, so the oxidation resistance of (Ti, Mo)Si2/MoSi2 composite coating in the periodic oxidation environment is far superior to that of the single MoSi2 coating.

    参考文献
    相似文献
    引证文献
引用本文

何浩然,刘奇,薄新维,王小宇,王焱辉,姚志远,韩校宇,刘成超.钼表面包埋渗法制备(Ti, Mo)Si2/MoSi2 涂层及其在1200 ℃周期性氧化环境下的氧化行为[J].稀有金属材料与工程,2021,50(11):3828~3836.[He Haoran, Liu Qi, Bo Xinwei, Wang Xiaoyu, Wang Yanhui, Yao Zhiyuan, Han Xiaoyu, Liu Chengchao. In-situ Fabrication of (Ti, Mo)Si2/MoSi2 Composite Coating to Protect Mo Substrate Against Cyclic Oxidation at 1200 °C[J]. Rare Metal Materials and Engineering,2021,50(11):3828~3836.]
DOI:10.12442/j. issn.1002-185X.20200678

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-07
  • 最后修改日期:2021-01-28
  • 录用日期:2021-02-03
  • 在线发布日期: 2021-11-25
  • 出版日期: 2021-11-24