+高级检索
医用可降解镁合金腐蚀疲劳行为研究进展
作者单位:

1.华北理工大学;2.北京科技大学

中图分类号:

TG146.2+2;TG178

基金项目:

国家重点研发计划(2016YFB0700303);河北省自然科学基金(E2020209153);河北省省属高校基本科研业务费(JYG2019001,JQN2019010);新金属材料国家重点实验室开放基金(2020-Z12);唐山市科技计划项目(20130205b)


Research Progress on Corrosion Fatigue Behavior of Novel Biomedical Degradable Magnesium-Based Alloys
Author:
Affiliation:

1.North China University of Science and Technology;2.University of Science and Technology Beijing

Fund Project:

Supported by The National Key Research and Development Program of China (2016YFB0700303); Natural science foundation of Hebei province (E20209153); Fundamental Research Funds for the Provincial Universities of Hebei (JYG2019001, JQN2019010); State Key Lab of Advanced Metals and Materials (2020-Z12); Science and Technology Project of Tangshan (20130205b)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [81]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    镁合金由于良好的生物安全性和力学承载性,同时兼具可控的体内外降解速率,被誉为新一代的“革命性医用金属材料”。然而,在湿润气氛条件下镁合金的耐蚀性能较差,尤其是在复杂载荷和腐蚀疲劳作用下(经历动态交变载荷及腐蚀介质协同作用)使得镁合金的力学固定/支撑功能急剧骤减,并导致植入提前失败。因此,本文从医用镁合金疲劳失效的施加载荷、频率与腐蚀因素的耦合机理出发,针对医用镁合金体内外腐蚀疲劳寿命、断口微区特征和腐蚀速率间定量关系,阐述交变载荷下腐蚀疲劳失效微观机制。同时,本文深入解析了疲劳微裂纹萌生/扩展机理,全面总结了提升镁合金腐蚀疲劳性能的举措,以及展望了生物医用可降解镁合金的应用前景和发展方向。

    Abstract:

    Magnesium-based alloys were known as the new generation ‘revolutionary medical metal materials’, due to its better biological safety, excellent mechanical bearing effect and controllable degradation rate in vivo and in vitro. However, the corrosion resistance of magnesium alloy is very poor under the humid atmosphere. Particularly in a complicated human physiological environment, implant materials need to undergo the synergistic effects of dynamic alternating load and corrosive medium. Thus, it can cause the mechanical fixation and mechanical support roles of the Mg-based alloys decreased dramatically, resulting in the premature implantation failure. As a result, the coupling mechanism of applied load, frequency and corrosion factors affecting fatigue failure of medical magnesium alloys was investigated. In view of the quantitative relationships between corrosion fatigue life, fracture micro-zone characteristics and corrosion rate of biomedical Mg alloys in vivo and in vitro, the microscopic mechanism of corrosion fatigue failure under cyclic loading was described. Meantime, the initiation and propagation mechanism of fatigue micro-cracks were thoroughly analyzed; the improvement methods of corrosion fatigue properties of Mg alloys were comprehensively summarized; and the application prospect and development direction of biodegradable magnesium alloys for biomedical use were forecasted.

    参考文献
    [1] Yu W M, Li J Y, Li J X et al. Rare Metal Materials and Engineering[J], 2019, 48(12): 4016
    [2] Zheng Y F, Wu Y H. Acta Metallurgica Sinica[J], 2017, 53(3): 257
    (郑玉峰,吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53(3): 257)
    [3] He Y, Tao H, Zhang Y, et al. Science Bulletin, 2009, 54(3): 484
    [4] Zheng Y F, Liu J N. Materials China[J], 2020, 39(02): 92
    [5] Zhang Y, Li J, Li J. Journal of Alloys and Compounds[J], 2018, 730: 458
    [6] Zhang Y, Li J Y, Liaw P K, et al. Journal of Alloys and Compounds[J], 2018, 769: 552
    [7] Zhang Y, Li J X, Li J Y. Journal of Alloys and Compounds[J], 2017, 728: 37
    [8] Li J X, Zhang Y, Li J Y, et al. Journal of Materials Science & Technology[J], 2018, 34(2): 299
    [9] Cai C H, Song R B, Wen E D, et al. Materials & Design[J], 2019, 182: 108038
    [10] Zhang Y, Li J Y, Liu Y, et al. Materials Characterization[J], 2020, 165:110368
    [11] Xu Y Z, Li J Y, Qi M F, et al. Journal of Materials Science[J], 2020, 55(3): 1231
    [12] ZHENG Y F, YANG H T. Acta Metallurgica Sinica[J], 2017, 53(10): 1227
    (郑玉峰,杨宏韬. 金属学报. 2017, 53(10): 1227)
    [13] M. Toorani, M. Aliofkhazraei. Surfaces and Interfaces[J],2019,14:262
    [14] Kirkland N T, Birbilis N, Staiger M P. Acta Biomaterialia[J], 2012, 8(3): 925
    [15] S.H. Teoh. International Journal of Fatigue[J], 2000, 22(10): 825
    [16] Fu Z X, Li X F, Luo L Z. Equipment Environmental Engineering[J]. 2019,16(07):71
    [17] Bian D, Zhou W R, Liu Y, et al. Acta Biomaterialia[J], 2016, 41:351
    [18] Pan J P, Fu P H, Peng L M, et al. International Journal of Fatigue[J], 2019, 118: 104
    [19] He C, Shao X H, Yuan S C, et al. Materials Science and Engineering[J], 2019, 744: 716
    [20] Wang B J, Xu D K, Wang S D, et al. International Journal of Fatigue[J], 2019, 120: 46
    [21] Meng Y X, Gao H, Hu J Q, et al. Journal of Materials Research [J], 2019, 34(6): 1054
    [22] Xu D K, Liu L, Xu Y B, et al. Scripta Materialia[J], 2007, 57(3): 285
    [23] Nicolas A, Co N E C, Engineering Fracture Mechanics[J], 2019, 220: 106661
    [24] Hochhalter J D, Littlewood D J, Christ Jr R J, et al. Modelling and Simulation in Materials Science and Engineering[J], 2010, 18(4): 045004
    [25] Raman R K S, Jafari S, Harandi S E. Engineering fracture mechanics[J],2015,137:97
    [26] Culbertson D, Jiang Y Y. Materials Science and Engineering: A[J], 2016, A676: 10
    [27] Shen Z, Zhao M, Zhou X Z, et al. Acta Biomaterialia[J], 2019: 671-680.
    [28] Chen R, Xu J Y, Zhang D F, et al. Rare Metal Materials and Engineering[J], 2019,48(07):2084
    [29] Wei L Y, Li J Y, Zhang Y, et al. Materials Chemistry and Physics[J], 2020, 241: 122441
    [30] Zhang X B, Yuan G Y, Mao L, et al. Materials Letters[J], 2012, 66(1): 209-211.
    [31] Celikin M, Kaya A A, Pekguleryuz M. Materials Science and Engineering: A[J], 2012, 534: 129
    [32] Somekawa H, Basha D A, Singh A. Materials Science and Engineering: A[J], 2018, 730: 355
    [33] Khan S A, Miyashita Y, Mutoh Y, et al. Materials Science and Engineering: A[J], 2006, 420(1-2): 315
    [34] Simanjuntak S, Cavanaugh M K, Gandel D S et al. Corrosion[J], 2014, 71(2): 199
    [35] Gandel D S, Easton M A, Gibson M A, et al. Materials Chemistry and Physics[J], 2014, 143(3): 1082
    [36] Wei L Y, Li J Y, Zhang Y, et al. Materials Chemistry and Physics[J], 2020, 241: 122441
    [37] Liu D X, Yang D L, Li X L, et al. Journal of Materials Research and Technology[J], 2019, 8(1): 1538
    [38] Jin S, Zhang D, Lu X P, et al. Journal of Materials Science & Technology[J], 2020,47:190
    [39] Wu G H, Fan Y, Zhai C Q, et al. Acta Metallurgica Sinica, 2008, 44(10): 1247
    [40] Luo Y F, Deng Y L, Guan L Q, et al. Materials & Design[J], 2020, 186: 108289
    [41] Munir K, Lin J X, Wen C E, et al. Acta Biomaterialia[J], 2019
    [42] Rad H R B, Idris M H, Kadir M R A, et al. Materials & Design[J], 2012, 33: 88
    [43] Li J X, Zhang Y, Li J Y. Rare Metal Materials and Engineering[J], 2019, 48(2): 463
    [44] Yang Y W, He C X, E D Y, et al. Materials & Design[J], 2019: 108259
    [45] Cheng W L, Ma S C, Bai Y, et al. Journal of Alloys and Compounds[J], 2018, 731: 945
    [46] Ibrahim H, Klarner A D, Poorganji B, et al. Journal of the Mechanical Behavior of Biomedical Materials[J], 2017, 69: 203
    [47] Liu J H, Song YW, Shan D Y, et al. Acta Metallurgica Sinica, 2018, 54(8): 114
    (刘金辉,宋影伟,单大勇等. 金属学报[J], 2018, 54(8): 114)
    [48] Ye H, Sun X, Liu Y, et al. Surface and Coatings Technology[J], 2019, 372: 288
    [49] Liu J, Yang L X, Zhang C Y, et al. Journal of Alloys and Compounds[J], 2019, 782: 648
    [50] Chen G, Fu Y J, Cui Y, et al. International Journal of Fatigue[J], 2019, 127: 461
    [51] He B L, Xie X T, Ding J H, et al. Rare Metal Materials and Engineering[J], 2019, 48(2): 650
    [52] Xi T F, Wei L N, Liu J, et al. Acta Metallurgica Sinica, 2017, 53(10): 1153
    (奚廷斐, 魏利娜, 刘婧等. 金属学报[J], 2017, 53(10): 1153)
    [53] Lin Y S, Cai S, Jiang S, et al. Journal of the Mechanical Behavior of Biomedical Materials[J], 2019, 90: 547
    [54] Prabhu D B, Gopalakrishnan P, Ravi K R. Journal of Alloys and Compounds[J], 2020, 812: 152146
    [55] Ding Z Y, Cui L Y, Chen X B, et al. Journal of Alloys and Compounds[J], 2018,764: 250
    [56] Uematsu Y, Kakiuchi T, Teratani T, et al. Surface and Coatings Technology[J], 2011, 205(8-9): 2778
    [57] Peron M, Torgersen J, Berto F. Procedia Structural Integrity[J], 2019, 18: 538
    [58] Rozali S, Mutoh Y, Nagata K. Materials Science and Engineering:A[J], 2011, 528(6): 2509
    [59] Zeng R C, Han L Y, Ke W, et al. Acta Metallurgica Sinica, 2005, 19: 1
    (曾荣昌,崔蓝月,柯伟. 金属学报, 2005, 19: 1)
    [60] Maltseva A, Shkirskiy V, Lefèvre G, et al. Corrosion Science[J], 2019, 153: 272
    [61] Bhuiyan M S, Mutoh Y, Murai T, et al. International Journal of Fatigue[J], 2008, 30(10-11): 1756
    [62] Khan S A, Bhuiyan M S, Miyashita Y, et al. Materials Science and Engineering A[J], 2011, 528: 1961
    [63] Jamesh M I, Wu G, Zhao Y, et al. Corrosion Science[J], 2015, 91: 160
    [64] Chamos A N, Pantelakis S G, Spiliadis V. Materials & Design[J], 2010, 31(9): 4130
    [65] Jamesh M, Kumar S, Narayanan T S N S. Corrosion Science[J], 2011, 53(2): 645
    [66] Liu M, Wang J, Zhu S, et al. Journal of Magnesium and Alloys[J], 2020, 8(1): 231
    [67] Sajuri Z B, Miyashita Y, Hosokai Y, et al. International Journal of Mechanical Sciences[J]. 2006. 48(2): 198
    [68] Harandi S E, Raman R K S. Engineering Fracture Mechanics[J], 2017, 186
    [69] Tokaji K, Kamakura M, Ishiizumi Y, et al. International Journal of Fatigue[J], 2004, 26(11): 1217
    [70] Jiang P L, Blawert C, Hou R Q, et al. Materials & Design[J], 2020, 59:107
    [71] Ghorbanpour S, McWilliams B A, Knezevic M. Fatigue & Fracture of Engineering Materials & Structures[J], 2019, 42(6): 1357
    [72] Jafari S, Raman R K S, Davies C H J, et al. Journal of the Mechanical Behavior of Biomedical Materials[J], 2017, 65: 634
    [73] Peng L M, Fu P H, Li Z M, et al. Materials Science and Engineering: A[J], 2014, 611: 170
    [74] Fatemi A, Socie D F. Fatigue & Fracture of Engineering Materials & Structures[J], 1988, 11(3): 149
    [75] Yu Q, Zhang J X, Jiang Y Y, et al. International Journal of Fatigue[J], 2011, 33(3): 437
    [76] Karparvarfard S M H, Shaha S K, Behravesh S B, et al. International Journal of Fatigue[J], 2019, 118: 282
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈连生,郑亚琪,李静媛,张源,刘芸,田亚强,郑小平.医用可降解镁合金腐蚀疲劳行为研究进展[J].稀有金属材料与工程,2021,50(9):3375~3387.[Liansheng Chen, Yaqi Zheng, Jingyuan Li, Yuan Zhang, Yun Liu, Yaqiang Tian, Xiaoping Zheng. Research Progress on Corrosion Fatigue Behavior of Novel Biomedical Degradable Magnesium-Based Alloys[J]. Rare Metal Materials and Engineering,2021,50(9):3375~3387.]
DOI:10.12442/j. issn.1002-185X.20200716

复制
文章指标
  • 点击次数:711
  • 下载次数: 1346
  • HTML阅读次数: 167
  • 引用次数: 0
历史
  • 收稿日期:2020-09-16
  • 最后修改日期:2020-10-27
  • 录用日期:2020-11-25
  • 在线发布日期: 2021-09-27
  • 出版日期: 2021-09-24