+高级检索
梯度磁选-涡流还原法制备钛硅铁合金
作者:
作者单位:

东北大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(U1760120, U1710257, U1702253, U1903129);国家重点研发计划子课题(2017YFC0210403-04, 2017YFC0210404)


Preparation of Ti-Si-Fe Alloy by Gradient Magnetic Separation-Vortex Reduction
Author:
Affiliation:

Northeastern University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对低品位含钛多金属矿储量巨大无法直接利用的现状,提出了梯度磁选-涡流还原法制备钛硅铁合金新工艺。先通过弱磁选处理低品位含钛多金属矿,得到弱磁铁精粉产品。弱磁尾矿经中磁选得到中磁含钛精矿。对中磁含钛精矿进行涡流熔融还原,得到钛硅铁合金。结果表明,铁能有效降低二氧化硅的还原温度。二氧化钛的直接碳热还原限制环节是低价钛氧化物的还原(TiO→Ti)。硅和铁能降低二氧化钛的碳热还原温度,实现钛硅铁合金的成功制备。

    Abstract:

    In view of the status quo of huge reserves of low-grade titaniferous polymetallic ore that could not use directly, a gradient magnetic separation-vortex reduction method for preparation of Ti-Si-Fe alloy was proposed. The low-grade titaniferous polymetallic ore was processed by dry flux weakening magnetic separation to obtain the magnet powder products. And the medium magnetic titanium concentrate was obtained by medium magnetic separation. The medium magnetic titanium concentrate was used to prepara the Ti-Si-Fe alloy by vortex smelting reduction method. The results showed that the reduction temperature of silica and carbon could be reduced effectively by the generated iron. In the process of direct carbothermal reduction of titanium dioxide, the restrictive link was the reduction of low-valence titanium oxide (TiO→Ti). The generated silicon and iron could reduce the carbothermal reduction temperature of titanium dioxide to realize the successful preparation of Ti-Si-Fe alloy.

    参考文献
    相似文献
    引证文献
引用本文

王坤,刘燕,邢斐,张廷安.梯度磁选-涡流还原法制备钛硅铁合金[J].稀有金属材料与工程,2021,50(6):2254~2257.[Wang Kun, Liu Yan, Xing Fei, Zhang Ting-an. Preparation of Ti-Si-Fe Alloy by Gradient Magnetic Separation-Vortex Reduction[J]. Rare Metal Materials and Engineering,2021,50(6):2254~2257.]
DOI:10.12442/j. issn.1002-185X.20200835

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-30
  • 最后修改日期:2021-01-18
  • 录用日期:2021-02-03
  • 在线发布日期: 2021-07-07
  • 出版日期: 2021-06-30