+高级检索
纳米多晶镁在不同条件下压缩的分子动力学模拟
作者:
作者单位:

1.太原科技大学材料科学与工程学院;2.太原科技大学机械工程学院

基金项目:

国家重点研发计划(2018YFB1307902);国家自然科学基金(U1710113);山西省研究生联合培养基地人才培养项目(2018JD33);山西省青年拔尖人才;山西省优秀青年基金(201901D211312);山西省高等学校创新人才优秀青年学术带头人;山西省高等学校科技成果转化培育项目(2019KJ028);山西省新兴产业领军人才;山西省研究生教育创新计划(2019SY482)


Molecular dynamics simulation of compression of nanocrystalline magnesium under different conditions
Author:
Affiliation:

1.Taiyuan University of Science and Technology,College of materials science and Engineering;2.Taiyuan University of Science and Technology,College of Mechanical Engineering

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为设计和开发具有优异力学性能的镁基纳米结构合金,本文利用Voronoi几何方法构造了晶粒随机取向的纳米多晶镁模型,利用分子动力学软件实现了不同条件下纳米多晶镁的压缩模拟,借助可视化软件对模拟结果进行了相关分析,发现:温度影响晶粒的变化趋势,随着温度升高,晶粒由细化转变为融合长大;压缩速度影响晶粒细化的时间,压缩速度增大,晶粒内部原子仍保持原有结构,只有晶粒边缘处原子位置移动,晶粒细化较晚发生,屈服强度增大,极限应变减小,弹性模量增大;纳米多晶镁中原子位置发生偏移,更易形成FCC结构,产生Shockley不全位错,Shockley不全位错与FCC结构的增长规律呈正比例。

    Abstract:

    To design and develop magnesium-based nanostructured alloys with excellent mechanical properties, a model of nanocrystalline magnesium with random grain orientation was constructed by the Voronoi geometry method. The compression simulation of nanocrystalline magnesium under different conditions was realized by molecular dynamics software. The simulation results were analysed by visualization software. The results show that with the increase of temperature, the grain size changes from refinement to fusion growth; the results show that the compression speed affects the time of grain refinement. With the increase of compression speed, the atoms in the grain still keep the original structure, only the atoms at the edge of the grain move, the grain refinement occurs later, the yield strength increases, the ultimate strain decreases, and the elastic modulus increases; the shift of atomic position in nano polycrystalline magnesium makes it easier to form FCC structure, resulting in Shockley incomplete dislocation, which is in positive proportion to the growth rule of FCC structure.

    参考文献
    [1] Tresa M. Pollock. Science[J],2010,328(5981):986-987
    [2] B.L Mordike, T Ebert. Materials Science and Engineering:A[J],2001,302(1):37-45
    [3] Xu Tiancai, Yang Yan, Peng Xiaodong et al. Journal of Magnesium and Alloys[J],2019,7(3):536-544
    [4] K. Lu.Science[J],2010,328(5976):319-320
    [5] Min Zha, HongMin Zhang, ZhiYuan Yu et al. Journal of Materials Science and Technology[J],2018,34(2):257-264
    [6] Wang J, Hirth J P, CN Tomé. Acta Materialia[J], 2009, 57(18):5521-5530
    [7] Kenneth Kanayo Alaneme, Eloho Anita Okotete. Journal of Magnesium and Alloys[J],2017,5(4):460-475
    [8] H. Gleiter. Acta Materialia[J],2000,48(1):1-29
    [9] Wenwu Xu, Xiaoyan Song, Nianduan Lu et al. Acta Materialia[J],2010,58(2):396-407
    [10] Xiaoyan Song, Yang Gao, Xuemei Liu et al. Acta Materialia[J],2013,61(6):2154-2162
    [11] C. Suryanarayana, F. H. Froes. Materials Science and Engineering:A[J],1994,179:108-111
    [12] Yanhao Dong, I. Wei Chen. Journal of the American Ceramic Society[J],2015,98(12):3624–3627
    [13] Avik Mahata, Koushik Sikdar. Journal of Magnesium and Alloys[J],2016,4(1):36-43
    [14] G. P. Zheng, Y. M. Wang, M. Li. Acta Materialia[J],2005,53(14):3893-3901
    [15] Wu Xinghui(吴兴惠). Course of modern material calculation and design(现代材料计算与设计教程)[M]. Electronic Industry Press,2002
    [16] Wang Hui(王慧), Hu Yuanzhong(胡元中), Zou Kun(邹鲲) et el. Chinese Science (Part A)[J]. 2001,31(3):261-266
    [17] Jia Zhengming(郏正明), Yang Genqing(杨根庆), Cheng Zhaonian(程兆年) et el. Acta physica Sinica[J],994,43(4):609-615
    [18] Zhang Daiyu(张岱宇), Liu Fusheng(刘福生), Li Xijun(李西军) et el. Journal of high pressure physics[J],2003,(01):17-22
    [19] Moitra Amitava. Computational Materials Science[J],2013,79:247-251
    [20] Ge Jiaqi(葛佳琪), Yang Wenming(杨文朋), Wang Shimeng(王诗蒙) et el. Nonferrous Metal Engineering[J],2019,9(9):99-106
    [21] Zuo Dai(左代), Feng Yijun(冯壹君), Nie Huihui(聂慧慧) et el. Hot working process[J],2020,548(22):64-69
    [22] Zhuoran Zeng, Mengran Zhou, Peter Lynch et el. Acta Materialia[J],2021,206:116648
    [23] Kelvin Y.Xie, Zafir Alam, Alexander Caffee et el. Scripta Materialia[J],2016,112:75-78
    [24] XinWang, Lin Jiang, Dalong Zhang et el. Materialia[J],2020,11:100731
    [25] N. Ono, R. Nowak, S. Miura. Materials Letters[J],2004,58(1):39-43
    [26] Qizhen Li. Materials Science and Engineering:A[J],2012,540:130-134
    [27] Md. Shahrier Hasan, Rachell Lee, Wenwu Xu. Journal of Magnesium and Alloys[J],2020,8(4):1296-1303
    [28] Qi Honggang. Deformation and microstructure evolution of magnesium single crystal [D]. Beijing Jiaotong University,2013
    [29] Xia Lu(夏璐), Chen Yongtai(陈永泰), Wang Saibei(王塞北) et el. Noble metal(贵金属)[J],2013(4):82-90
    [30] A Caro , D A Crowson, M Caro. Physical Review Letters[J],2005,95(7):075702
    [31] Alexander Stukowski, Babak Sadigh, Paul Erhart et el. Modelling and Simulation in Materials Science and Engineering[J],2009,17(7):075005
    [32] X. W. Zhou, R. A. Johnson, H. N. G. Wadley. Physical Review B[J],2004,69(14):144113
    [33] Pierre Hirel. Computer Physics Communications[J],2015,197:212-219
    [34] Steve Plimpton. Journal of Computational Physics[J],1995,117:1-19
    [35] Alexander Stukowski. Modelling and Simulation in Materials Science and Engineering[J],2010,18(1):015012
    [36] Peter Mahler Larsen, S?ren Schmidt, Jakob Schi?tz. Modelling and Simulation in Materials Science and Engineering[J],2016,24(5):055007
    [37] Thomas Bonald, Bertrand Charpentier, Alexis Galland et el.arXiv:1806.01664[cs.SI]
    [38] Jason F. Panzarino, Timothy J. Rupert. JOM[J],2014,66(3):417-428
    [39] Alexander Stukowski, Vasily V Bulatov, Athanasios Arsenlis. Modelling and Simulation in Materials Science and Engineering[J],2012,20(8):085007
    [40] J. Dana. Honeycutt, Hans C. Andersen. Journal of Physical Chemistry[J],1987,91(19):4950-4963
    [41] A Berghezan, A Fourdeux, S Amelinckx. Acta Metallurgica[J],1961,9(5):464–490
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨千华,薛春,楚志兵,李玉贵,马立峰.纳米多晶镁在不同条件下压缩的分子动力学模拟[J].稀有金属材料与工程,2022,51(4):1293~1303.[Yang Qianhua, Xue Chun, Chu Zhibing, Li Yugui, Ma Lifeng. Molecular dynamics simulation of compression of nanocrystalline magnesium under different conditions[J]. Rare Metal Materials and Engineering,2022,51(4):1293~1303.]
DOI:10.12442/j. issn.1002-185X.20210271

复制
文章指标
  • 点击次数:658
  • 下载次数: 1088
  • HTML阅读次数: 130
  • 引用次数: 0
历史
  • 收稿日期:2021-03-29
  • 最后修改日期:2021-05-07
  • 录用日期:2021-05-24
  • 在线发布日期: 2022-05-05
  • 出版日期: 2022-04-28