+高级检索
Ti-Nb微合金化对超纯30%Cr超级铁素体不锈钢组织和力学性能的影响
作者:
作者单位:

1.中国科学技术大学;2.中国科学院金属研究所;3.辽宁石油化工大学;4.沈阳铸造研究所有限公司

基金项目:

辽宁省科技攻关计划课题(项目号2019JH2/10100009)


Effects of Ti-Nb microalloying on the microstructure and mechanical properties of an ultra-pure 30% Cr super ferritic stainless steel
Author:
Affiliation:

1.School of Materials Science and Engineering,University of Science and Technology of China;2.Institute of Metal Research,Chinese Academy of Sciences

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    通过光学显微镜(OM)、场发射扫描电镜(SEM)和透射电镜(TEM)等研究了Ti-Nb微合金化对超纯(C+N=29 ppm)30% Cr超级铁素体不锈钢组织和性能的影响。结果表明,Ti-Nb微合金化可将该超纯材料基体中富Cr氧化物(尺寸约2~6 μm)转变为富Ti-O-N的复合包裹型脆性夹杂物(尺寸约1~4 μm);同时会在基体中形成纳米级(Ti, Nb)(C, N)析出相。铁素体晶粒长大倾向性较大是该超纯材料的组织演变特性,Ti-Nb微合金化可减弱晶界迁移速率,起到细化晶粒的作用;Ti-Nb微合金化提高了材料的室温强度和硬度,并导致材料室温延伸率对晶粒尺寸的敏感性有所增加。此外,Ti-Nb微合金化对该超纯材料的冲击韧性具有“双重”作用,一方面可通过细化晶粒改善材料韧性,另一方面会产生脆性夹杂物恶化材料韧性,尤其是低温韧性。

    Abstract:

    The effects of Ti-Nb microalloying on the microstructure and mechanical properties of an ultra-pure 30% Cr super ferritic stainless steel were studied by means of optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that the inclusions in the matrix of ultra-pure material are mainly composed of Cr-rich oxides with approximately size of 2~6 μm. With Ti-Nb addition, Cr-rich oxides are transformed into Ti-O-N-rich composite oxides with approximately size of 1~4 μm. Moreover, the nano-scale (Ti, Nb)(C, N) precipitations are formed in the matrix with Ti-Nb microalloying. It is worthy of noting that the strongly growth inclination of ferrite grain is the unique feature for the ultra-pure material during microstructure evolution. Ti-Nb microalloying can apparently refine the microstructure by weakening the migration rate of grain boundary, and it can also promote the room temperature strengthen and hardness. Meanwhile, the sensation of room temperature elongation of material on grain size is enhanced by Ti-Nb microalloying. In addition, Ti-Nb microalloying has the double effect on the impact toughness for the ultra-pure material. On the one hand, the toughness can be improved by refining the grains, on the other hand, brittle inclusions formed in matrix apparently deteriorate the toughness of ultra-pure material, especially for the toughness at low temperature。

    参考文献
    [1] Ma Li, Hu Shengsun, Shen Junqi et al. Materials Letters[J], 2016, 184: 204.
    [2] Dowling N.J.E., Kim H., Kim J.N. et al. Corrosion Science[J], 1999, 55: 743.
    [3] Lu Shiying (陆世英). Super Stainless Steel and High Nickel Corrosion Resistant Alloy(超级不锈钢和高镍耐蚀合金)[M], Bei jing, Chemical Industry Press, 2012: 3.
    [4] Yan Haitao, Bi Hongyun, Li Xin et al. Materials Characterization[J], 2008, 59(12): 1741.
    [5] Wu Xiaofang(吴小芳), Zhang Wenqiang(张文强), Yu Bo(于波) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2015, 44(6): 1556.
    [6] Ma Li, Han Jian, Shen Junqi et al. Acta Metallurgica Sinica (English Letters)[J], 2014, 27(3): 407.
    [7] Van Zwieten A.C.T.M., Bulloch J. H. International Journal of Pressure Vessels and Piping[J], 1993, 56(1): 69.
    [8] OTOTANI Tohei, YACHI Kazuto, KATAURA Yasuzi et al. Transactions of the Iron and Steel Institute of Japan[J], 1975, 15: 646.
    [9] Kang K., Mao W.M., Chen Y.J. et al. Materials Science and Engineering A[J], 2016, 667: 211.
    [10] Yan Haitao(颜海涛), Bi Hongyun(毕洪运), Li Xin(李鑫) et al. Iron and Steel(钢铁)[J], 2009, 44(1): 60.
    [11] Shan Yating, Luo Xinghong, Hu Xiaoqiang et al. Journal of Materials Science Technology[J], 2011, 27(4): 352.
    [12] Wang Li-xin, Song Chang-jiang, Sun Feng-mei et al. Materials and Design[J], 2009, 30: 49.
    [13] Wang Ke(王可), Zhao Yongqing(赵永庆), Jia Weiju(贾蔚菊) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2021 , 50(2): 553.
    [14] Lu Hui-hu, Luo Yi, Guo Hong-kai et al. Materials Science and Engineering A[J], 2018, 735: 31.
    [15] Hou Yuyang, Cheng Guoguag, Metallurgical and Materials Transactions B[J], 2019, 50: 1351.
    [16] Liu Jing(刘静), Luo Xinghong(罗兴宏), Hu Xiaoqiang(胡小强) et al. Acta Metallurgica Sinica(金属学报)[J], 2011, 47(6): 688.
    [17] Moon Joonoh, Lee Changhee. Acta Materialia[J], 2009, 57: 2311.
    [18] Fujita N, Ohmura K, Kikuchi M. Scripta Materialia[J], 1996, 35(6): 705.
    [19] Wang Yinyang(王荫洋), Wang Rong(王蓉), Fang Canfeng(房灿峰) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2021, 50(2): 608.
    [20] Irani Hadi, Ghazani Mehdi Shaban. Materials Chemistry and Physics[J], 2020, 251: 123089.
    [21] Liu Haitao(刘海涛), Gao Fei(高飞), Ma Dongxu(马东旭) et al. Iron and Steel(钢铁)[J], 2010, 45 (8): 76.
    [22] Ma Tao, Gao Jianxin, Li Huirong et al. Rare Metal Materials and Engineering[J], 2021, 50(3): 0860.
    [23] Ma Li(马立), Hu Shengsun(胡绳荪), Shen Junqi(申俊琦) et al. Transactions of Materials and Heat Treatment(材料热处理学报)[J], 2015, 36(11): 136.
    [24] Han Jian, Zhu Zhixiong, Wei Gang et al. Acta Metallurgica Sinica (English Letters)[J], 2020, 33: 716.
    [25] Du J., Strangwood M., Davis C.L. Journal of Materials Science Technology[J], 2012, 28(10): 878.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

祝洋洋,宁礼奎,段超辉,刘恩泽,佟健,谭政,李海英,赵磊,王增睿,郑志. Ti-Nb微合金化对超纯30%Cr超级铁素体不锈钢组织和力学性能的影响[J].稀有金属材料与工程,2022,51(5):1845~1856.[Zhu Yangyang, Ning Likui, Duan Chaohui, Liu Enze, Tong Jian, Tan Zheng, Li Haiying, Zhao Lei, Wang Zengrui, Zheng Zhi. Effects of Ti-Nb microalloying on the microstructure and mechanical properties of an ultra-pure 30% Cr super ferritic stainless steel[J]. Rare Metal Materials and Engineering,2022,51(5):1845~1856.]
DOI:10.12442/j. issn.1002-185X.20210421

复制
文章指标
  • 点击次数:709
  • 下载次数: 1064
  • HTML阅读次数: 128
  • 引用次数: 0
历史
  • 收稿日期:2021-05-13
  • 最后修改日期:2021-06-01
  • 录用日期:2021-06-22
  • 在线发布日期: 2022-06-09
  • 出版日期: 2022-05-30