+高级检索
α+β型钛合金惯性摩擦焊接头焊态/热处理态组织演变及性能研究
作者:
作者单位:

哈尔滨焊接研究院有限公司

中图分类号:

TG456.9

基金项目:

黑龙江省省院科技合作项目资助(项目号YS20A19),国家自然青年科学资助(项目号52005139)


Microstructure evolution and mechanical properties of inertia friction welding joint of α+β titanium alloy in welding state/post-weld heat treatment
Author:
Affiliation:

Harbin Welding Institute Limited Company

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    文中采用SEM、EBSD及TEM等表征手段分析了惯性摩擦焊接头在焊态及焊后热处理态下的微观组织形貌与分布特征,并研究了焊后热处理态下的接头力学性能。结果表明,焊缝区为单一等轴α晶粒,在焊态下由板条状马氏体α′相+晶界片状αp相+亚稳态β相构成,并伴随着(0001)//ND丝织构。热处理后转变为晶界片状αp相+晶内片状αs+β相,在原有丝织构的基础上形成了(21 ?1 ?3)[21 ?1 ?9]取向织构;焊缝区显微硬度最高,随着向母材区过度显微硬度逐渐降低,焊后热处理可降低焊缝区硬度,使接头硬度分布较为均匀。接头在室温下的拉伸试验均断裂于远离焊缝中心的母材区。

    Abstract:

    The SEM, EBSD and TEM were used for analyze the microstructure morphology and distribution characteristics of inertial friction welded joint in welding state and post-welding heat treatment state. In addition, the mechanical properties of the joint in post-welding heat treatment state were studied. The results showed that the weld zone was single equiaxed α grains, which is composed of lamellar martensite α" phase + grain boundary lamellar αP phase + metastable β phase in welding state, and with (0001)//ND fiber texture. The microstructure was consisted of grain boundary lamellar αP phase + intragranular lamellar αS +β phase after post-weld heat treatment. The (21 ?1 ?3)[21 ?1 ?9] orientation texture was also formed on the basis of the original fiber texture. Under the effect of welding pressure and thermal cycling, the equiaxed αP phase in thermo-mechanically affected zone had been transformed into a rod and approximately paralleled to the welding interface. The equiaxed αP phase in thermal affected zone still maintained original shape. The weld zone had the highest microhardness, which gradually decreased from weld zone to base metal. The post-weld heat treatment can reduce the hardness of the weld zone and obtain uniform hardness distribution in welded joint. The tensile specimens at room temperature failed in the base metal away from weld center line.

    参考文献
    [1] Testani C, Astarita A, Scherillo F, et al. Beta Forging of a Ti6Al4V Component for Aeronautic Applications: Microstructure Evolution[J]. Metallography Microstructure Analysis, 2014, 3(6): 460-467.
    [2] Neminathan P V , Yadav J S , Reddy K R , et al. Development of disc forgings in Ti-6Al-4V alloy for aero-engine application[J]. Transactions of the Indian Institute of Metals, 2008, 61(5):363-370.
    [3] Hewitt J S , Davies P D , Thomas M J , et al. Titanium alloy developments for aeroengine fan systems[J]. Materials Science and Technology, 2014, 30(15):1919-1924.
    [4] Filice L , Gagliardi F , Lazzaro S , et al. Ti6Al4V Superplastic Forming for the Production of an Aircraft Part[C]. American Institute of Physics, 2011.
    [5] Neminathan P V, Velpari M S, Rao S R A, et al. Development of ring forgings in Ti-6Al-4V alloy for aero-engine applications[J]. Transactions of the Indian Institute of Metals, 2008, 61(5): 355-361.
    [6] Odenberger E L, Hertzman J, P. Thilderkvist. Thermo-mechanical sheet metal forming of aero engine components in Ti-6Al-4V–PART 1: Material characterisation[J]. International Journal of Material Forming, 2013, 6(3): 391-402.
    [7] Oberwinkler B, Riedler M, Eichlseder W. Importance of local microstructure for damage tolerant light weight design of Ti–6Al–4V forgings[J]. International Journal of Fatigue, 2010, 32(5):808-814.
    [8] 曲伸, 李英, 倪建成, 等. 航空发动机先进焊接技术应用[J]. 航空制造技术, 2015(20): 53-55.
    [9] 王伦, 韩秀峰, 张露. 商用航空发动机转子部件的电子束焊接[J]. 航空制造技术, 2015(11): 102-104.
    [10] 耿培皓, 秦国梁. 惯性摩擦焊接技术及其在航空工业领域的应用[J]. 精密成形工程, 2017, 9(05): 73-82.
    [11] Nicholas E D, Thomas W M. A review of friction processes for aerospace applications[J]. International Journal of Materials Product Technology, 1998, 13(1/2):45-55.
    [12] D. Xiao-Ling. The Achievements of Advanced Manufacturing Techniques in Aviation and Aerospace Industries. International Journal of Plant Engineering and Management, 2012(3): 145-152.
    [13] 韩秀峰, 张露, 钱凌翼. 固态焊接在民用航空发动机中的应用[J]. 航空制造技术, 2012(13): 55-58.
    [14] 张露, 韩秀峰, 王伦. 商用航空发动机盘轴类转动件焊接工艺分析[J]. 航空制造技术, 2015(11): 96-98+115.
    [15] 趙强, 祝文卉, 邵天巍, 等. 惯性摩擦焊在航空发动机转子制造中的应用[J]. 航空动力, 2019 (05): 41-44.
    [16] Attallah, M. M. Welding and Joining of Aerospace Materials || Inertia friction welding (IFW) for aerospace applications[J]. Welding Joining of Aerospace Materials, 2012:25-74.
    [17] Wu W, Cheng G, Gao H, et al. Microstructure transformation and mechanical properties of TC4 alloy joints welded by TIG[J]. Transactions of the China Welding Institution, 2009, 30(7): 81-84.
    [18] Karimzadeh F , Salehi M , Saatchi A , et al. Effect of microplasma arc welding procress parameters on grain growth and porosity distribution od thin sheet Ti6Al4V alloy weldment[J]. Advanced Manufacturing Processes, 2005, 20(2): 205-219.
    [19] Cheng F, Hong F, Zhi L, et al. Numerical-simulation of dynamic process in TC4 weld pool during hollow cathode arc welding in vacuum[J]. Material Science Technology, 2001, 9(3): 293-296.
    [20] Gao X L , Liu J , Zhang L J , et al. Effect of the overlapping factor on the microstructure and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V sheets[J]. Materials Characterization, 2014, 93:136-149.
    [21] Irisarri A M , Barreda J L , Azpiroz X . Influence of the filler metal on the properties of Ti6Al4V electron beam weldments. Part I: Welding procedures and microstructural characterization[J]. Vacuum, 2009, 84(3):393-399.
    [22] Samavatian M, Zakipour S, Paidar M. Effect of bonding pressure on microstructure and mechanical properties of Ti-6Al-4V diffusion-bonded joint[J]. Welding in the World, 2017, 61(1):69-74.
    [23] Turner R , Gebelin J C , Ward R M , et al. Linear friction welding of Ti–6Al–4V: Modelling and validation[J]. Acta Materialia, 2011, 59(10):3792-3803.
    [24] L8iu H J, Zhou L. Microstructural zones and tensile characteristics of friction stir welded joint of TC4 titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(10): 1873-1878.
    [25] Niu R F , Meng W R , Liu X F , et al. Analysis of temperature field in TC4 titanium alloy inertia friction welded joint[J]. Transactions of The China Welding Institution.
    [26] Turner R P, Perumal B, Lu Y, et al. Modeling of the Heat-Affected and Thermomechanically Affected Zones in a Ti-6Al-4V Inertia Friction Weld[J]. Metallurgical and Materials Transactions B, 2018.
    [27] Rui-Zhi C , Li-Ming K E , Wen-De B U . Plastic metal flow action of inertia friction welding for TC4 titanium alloy[J]. Electric Welding Machine, 2012.
    [28] 孟卫如, 牛锐峰, 王士元, 等. TC4钛合金惯性摩擦焊接头温度场分析[J]. 焊接学报, 2004, 25(4): 111-114+134.
    [29] 张田仓, 李晶, 季亚娟, 等. TC4钛合金线性摩擦焊接头组织和力学性能[J]. 焊接学报, 2010, 31(02): 53-56+115.
    [30] 马铁军, 张晓强, 张学军, 等. 线性摩擦焊TC6钛合金接头组织演变分析[J]. 航空材料学报, 2013, 33(06): 33-37.
    [31] Wu Yanquan, Zhang Chunbo, Zhou Jun, et al. Analysis of the Microstructure and Mechanical Properties during Inertia Friction Welding of the Near-α TA19 Titanium Alloy[J]. Chinese Journal of Mechanical Engineering, 2020,33:88.
    [32] 陈亮维, 刘状, 虞澜, 等. 工业纯钛金属织构标准极图的计算及分析[J]. 材料科学与工艺, 2020, 28(01): 17-23.
    [33] Bridier F, Villechaise P, Mendez J. Analysis of the different slip systems activated by tension in a α/β titanium alloy in relation with local crystallographic orientation[J]. Acta Materialia, 2005, 53(3):555-567.
    [34] 程超, 陈志勇, 秦绪山, 等. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报,2020,56(02):193-202.
    [35] Runchen Jia, Weidong Zeng, Shengtong He, et al. The analysis of fracture toughness and fracture mechanism of Ti60 alloy under different temperatures[J]. Journal of Alloys and Compounds, 2019, 810:151899-.
    [36] 王晓燕,刘建容,雷家峰,等. 初生及次生α相对Ti-1023合金拉伸性能和断裂韧性的影响[J]. 金属学报,2007,43(11):1129-1137.
    [37] Shi X H, Zeng W D, Shi C L, et al. Study on the fatigue crack growth rates of Ti–5Al–5Mo–5V–1Cr-1Fe titanium alloy with basket-weave microstructure[J]. Materials Science Engineering A, 2015, 621(jan.5):143-148.
    [38] Duerig TW, Allison JE, Williams JC. Microstructural influences on fatigue crack propagation in Ti-10V-2Fe-3Al. Metallurgical Transactions A, 1985, 16(5):739-751.
    [39] Kai W, Bao R, Bao J, et al. Effect of primary α phase on the fatigue crack path of laser melting deposited Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy[J]. International Journal of Fatigue, 2018, 116(NOV.): 535-542.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

乌彦全,周军,张春波,梁武,李睿,秦丰.α+β型钛合金惯性摩擦焊接头焊态/热处理态组织演变及性能研究[J].稀有金属材料与工程,2022,51(6):2144~2150.[Wu Yanquan, Zhou Jun, Zhang Chunbo, Liang Wu, Li Rui, Qin Feng. Microstructure evolution and mechanical properties of inertia friction welding joint of α+β titanium alloy in welding state/post-weld heat treatment[J]. Rare Metal Materials and Engineering,2022,51(6):2144~2150.]
DOI:10.12442/j. issn.1002-185X.20210448

复制
文章指标
  • 点击次数:647
  • 下载次数: 1004
  • HTML阅读次数: 98
  • 引用次数: 0
历史
  • 收稿日期:2021-05-19
  • 最后修改日期:2021-07-21
  • 录用日期:2021-08-05
  • 在线发布日期: 2022-07-06
  • 出版日期: 2022-06-29