+高级检索
动态冲击条件下Ti-15Mo时效钛合金的变形机制
作者:
作者单位:

1.东北大学材料科学与工程学院;2.西北有色金属研究院

中图分类号:

TG 146.2

基金项目:

装备预研重点实验室基金一般项目(642902190501)


Deformation mechanism of Ti-15Mo aged titanium alloy under dynamic impact conditions
Author:
Affiliation:

1.Northeastern University School of materials science and Engineering;2.Northwest Institute for Non-Ferrous Metal Research

Fund Project:

Equipment pre-research key laboratory fund project

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    通过固溶时效处理Ti-15Mo合金获得片层组织,采用分离式霍普金森压杆(SHPB)研究应变速率对变形机制产生的影响,结合绝热温升、显微组织和硬度分析表明:由于位错与第二相的相互作用,导致流变应力曲线发生波动。提高应变速率,一方面造成应变速率强化;另一方面促进绝热升温软化。合金温度达到379K时,热软化效应超过应变硬化效应,变形方式由均匀塑性变形变为绝热剪切变形。绝热剪切带的宽度随切应变的增加而增大,通过亚晶旋转再结晶机制产生等轴晶粒。再结晶的界面强化导致组织硬度由高到低为:混合组织>条状组织>基体组织。时效处理抑制应力诱发孪生(TWIP)效应,造成合金较低的应变硬化能力,劣化材料的动态力学性能。

    Abstract:

    The lamellar structure of Ti-15Mo alloy was obtained by solution aging treatment. The effect of strain rate on deformation mechanism was studied by split Hopkinson pressure bar (SHPB). Combined with adiabatic temperature rise, microstructure and hardness analysis, it was shown that the flow stress curve fluctuated due to the interaction between dislocation and the second phase. Increasing the strain rate, on the one hand, causes the strain rate to strengthen; On the other hand, it promotes adiabatic heating and softening. When the alloy temperature reaches 379k, the thermal softening effect exceeds the strain hardening effect, and the deformation mode changes from uniform plastic deformation to adiabatic shear deformation. The width of adiabatic shear band increases with the increase of shear strain, and equiaxed grains are produced by subcrystalline rotation recrystallization mechanism. The interface strengthening of recrystallization leads to the hardness from high to low: mixed tissue>strip tissue>matrix tissue. Aging treatment inhibits the twinning induced plasticity (TWIP) effect, resulting in lower strain hardening ability of the alloy and deteriorating the dynamic mechanical properties of the material.

    参考文献
    [1] Banerjee, D. and J.C. Williams, Perspectives on Titanium Science and Technology[J]. Acta Materialia, 2013.
    [2] Sidhu, S.S., H. Singh and M.A. Gepreel, A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials[J]. Materials Science & Engineering C-Materials for Biological Applications, 2020.
    [3] Pengru Li, Qunbo Fan, Xinjie Zhu, etal. Studyof high speed impact induced conoidal fracture of Ti alloy layer in composite armor plate composed of Ti- and Al-alloy layers[J]. Defence Technology, 2020.
    [4] Xiaohua Min, Xuejiao Chen, Satoshi Emura, et al. Mechanism of twinning-induced plasticity in β-type Ti–15Mo alloy[J]. Scripta Materialia, 2013, 69(5):393-396.
    [5] Kai Yao, Xiaohua Min, Satoshi Emura, et al. Enhancement of impact toughness of β-type Ti–Mo alloy by {332} twinning[J]. Journal of Materials Science, 2019, 54(16):11279–11291.
    [6]徐彦强. Ti-B20高强β钛合金压缩性能及高温变形行为研究[D]. 哈尔滨工业大学.
    [7]尤振平. 钛合金的显微组织与动态性能的关系研究[D]. 北京有色金属研究总院.
    [8] Tiewei Xu, Shanshan Zhang, Ning Cui, et al. Precipitation Behavior of Ti15Mo Alloy and Effects on Microstructure and Mechanical Performance[J]. Journal of Materials Engineering and Performance, 2019, 28(4).
    [9]徐雪峰, 王琳, 沙彦刚,等. TC4 ELI钛合金动态压缩性能及绝热剪切敏感性的研究[J]. 兵工学报, 2020, v.41;No.275(02):160-167.
    [10] Na Yan, Zezhou Li, Yongbo Xu, et al. Shear Localization in Metallic Materials at High Strain Rates[J]. Progress in Materials Science, 2020, 119(1):100755.
    [11] Yazhou Guo, Qichao Ruan, Shengxin Zhu, et al. Dynamic failure of titanium: Temperature rise and adiabatic shear band formation[J]. Journal of the Mechanics and Physics of Solids, 2019, 135:103811.
    [12] Xiaohui Shi, Cong Zhao, Zuhan Cao, et al. Mechanical behavior of a near α titanium alloy under dynamic compression:Characterization and modeling[J]. Progress in Natural Science:Materials International, 2019(4).
    [13] Kai Yao, Xiaohua Min, Satoshi Emura, et al. Coupling effect of deformation mode and temperature on tensile properties in TWIP type Ti-Mo alloy[J]. Materials Science and Engineering, 2019, 766(Oct.24):138363.1-138363.10.
    [14] Xiaohui Shi, Cong Zhao, Zuhan Cao, et al. The yielding, deformation and fracture behavior for the Widmansttten structure of Ti–8Al–1Mo–1V alloy upon high speed impact[J]. Journal of Alloys and Compounds, 2019, 810:151952.
    [15] Zezhou Li, Shiteng Zhao, Bingfeng Wang, et al. The effects of ultra-fine-grained structure and cryogenic temperature on adiabatic shear localization in titanium[J]. Acta Materialia, 2019, 181:408-422.
    [16] Y.Yang, F.Jiang, B.M.Zhou, et al. Microstructural characteriza- tion and evolution mechanism of adiabatic shear band in a near beta-Ti alloy[J]. Materials Science and Engineering A, 2011, 528(6):2787-2794.
    [17] Marc A.Meyers. Vitali F.Nesterenko, Jerry C.LaSalvia, et al. Shear localization in dynamic deformation of materials: microstructural evolution and self-organization[J]. Materials Science and Engineering A, 317 (2001) 204–225, 2001.
    [18] V.F.Nesterenko, M.A.Meyers, J.C.LaSalvia, et al. Shear localization and recrystallization in high-strain, high-strain-rate deformation of tantalum[J]. Materials Science and Engineering A, 229 (1997) 23-41, 1997.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙久平,辛社伟,毛小南,张思远,周伟,李倩,蔡建华.动态冲击条件下Ti-15Mo时效钛合金的变形机制[J].稀有金属材料与工程,2021,50(12):4327~4333.[Sun JiuPing, Xin SheWei, Mao XiaoNan, Zhang SiYuan, Zhou Wei, Li Qian, Cai JianHua. Deformation mechanism of Ti-15Mo aged titanium alloy under dynamic impact conditions[J]. Rare Metal Materials and Engineering,2021,50(12):4327~4333.]
DOI:10.12442/j. issn.1002-185X.20210488

复制
文章指标
  • 点击次数:733
  • 下载次数: 1363
  • HTML阅读次数: 177
  • 引用次数: 0
历史
  • 收稿日期:2021-06-02
  • 最后修改日期:2021-08-02
  • 录用日期:2021-08-06
  • 在线发布日期: 2022-01-09
  • 出版日期: 2021-12-24