+高级检索
基于不同Mo添加的激光立体成形Ti-6Al-xMo合金的显微组织演化和力学性能研究
作者单位:

1.长安大学;2.西北工业大学

基金项目:

陕西省自然科学基金项目(2020JM-239);西北工业大学凝固技术国家重点实验室开放课题(SKLSP202110);中央高校基本科研业务费项目(300102311401,300102319208)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本文采用激光立体成形技术(Laser Solid Forming,LSF),基于Mo当量混合Ti、Al、Mo粉末沉积新型Ti-6Al-xMo(x=2、3、4)钛合金,研究了其显微组织形成与室温拉伸性能。结果表明:三种合金的凝固组织均呈现沿<100>方向生长的粗大柱状晶,顶部为细小等轴晶,且随着Mo含量的增加,柱状晶宽度逐渐减小,等轴晶层厚度逐渐增大;初生β晶粒中的微观结构是由初生α板条和残余β相组成的,还存在晶界α和α束域,通过电子背散射衍射(Electron Backscatter Diffraction, EBSD)分析发现三种成分均出现12种α变体且出现变体占优现象;随着Mo含量的增加,Ti-6Al-xMo强度硬度增加,延伸率减小,初生α板条宽度和面积比减小,增加到Ti-6Al-4Mo时,晶内出现次生α相。相比之下激光立体成形Ti-6Al-2Mo、Ti-6Al-3Mo分别具有抗拉强度962MPa、延伸率11.5%和抗拉强度982 MPa、延伸率9.2%的优异室温拉伸性能。

    Abstract:

    Based on Mo equivalent design, novel Ti-6Al-xMo(x = 2, 3, 4) titanium alloys was deposited by laser solid forming (LSF) from mixed Ti, Al and Mo elemental powders, and the microstructure and room temperature tensile properties of the alloys were investigated. The results showed that the solidification microstructure of the three alloys presents a coarse columnar grains growing along the direction of <100>, and the top is composed of equiaxed grains. With the increase of Mo content, the average width of the columnar grains decreases, and the thickness of the equiaxed grains layer increases gradually. The microstructure in primary β grains is composed of primary α lath and retained β phase, and there also exits grain boundary α and α colonies. With the increase of Mo content, the width and area ratio of primary α lath decrease. When the Mo content increases to 4 wt.%, the secondary α phase appears in the grain. Moreover, 12 α variants were found in all the three components by Electron Backscatter Diffraction (EBSD) analysis, and the variation was dominant. In terms of mechanical properties, the strength and hardness increase with the increase of Mo content while the elongation decreases. By contrast, Ti-6Al-2Mo and Ti-6Al-3Mo have the very good tensile properties of 962 MPa tensile strength and 11.5% elongation, and 982 MPa tensile strength and 9.2% elongation, respectively.

    参考文献
    [1] Huang W D(黄卫东), Lin X(林 鑫), Chen J(陈 静), et al. Laser Solid Forming Technology(激光立体成形)[M]. Xi’an: Northwestern Polytechnical University Press, 2007. 1~20, 113
    [2] Xu Q D, Zhang P C,Yang L,et al. Materials Science and Engineering A[J], 2021, 799, 140335
    [3] Liu D L(刘东雷), Chen Q(陈 情), Wang D(王德), et al. Acta Metallurgica Sinica(金属学报)[J], 2020, 56(07): 1025-1035
    [4] Zhang S Y, Zhang Q, Zheng M, Hu Y,et al. Materials Science and Engineering A [J], 2021, 140388
    [5] Alcisto J , Enriquez A , Garcia H , et al. Journal of Materials Engineering and Performance[J], 2011, 20(2): 203-212
    [6] Thijs L , Verhaeghe F , Craeghs T,et al. Acta Materialia[J], 2010, 58(9): 3303-3312
    [7] Carroll B E, Palmer T A, Beese A M. Acta Materialia[J], 2015, 87: 309-320
    [8] Zhu Y Y, Tian X J, Li J,et al. Materials & Design[J], 2015, 67: 538-542
    [9] Tan H(谭 华), Zhang F Y(张凤英), Chen J(陈 静),et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2009, 38(004): 574-578
    [10] Dong Y P, Li Y L, Zhou, S Y,et al. Additive Manufacturing[J],2020, 37, 101699
    [11] Polozov I, Sufiiarov V, Popovich A,et al. Journal of Alloys and Compounds[J], 2018, 763: 436-445
    [12] Simonelli M, Aboulkhair N T, Cohen P,et al. Materials Characterization[J], 2018, 143: 118-126
    [13] Jennifer A. Glerum, Christoph K,et al. Additive Manufacturing[J], 2020, 36, 101461
    [14] Vrancken B, Thijs L, Kruth J P,et al. Acta Materialia[J], 2014, 68: 150-158
    [15] Li G C, Li J, Tian X J, et al. Materials Science and Engineering A[J], 2017, 684: 233-238
    [16] Almeida A, Gupta D, Loable C,et al. Materials Science and Engineering C[J], 2012, 32(5): 1190-1195
    [17] Kang N, Li Y L, Lin X,et al. Journal of Alloys and Compounds[J], 2019, 771: 877-884
    [18] Zhang F Y, Chen H, Xu Y K,et al. Rare Metal Materials and Engineering[J], 2013, 42(7): 1332-1336
    [19] Li P Y, Ma X D, Tong T,et al. Journal of Alloys and Compounds[J], 2020, 815, 152412
    [20] Narayana P L, Lee S W, Choi S W,et al. Journal of Alloys and Compounds[J], 2019, 811, 152021
    [21] Humbert M, Wanger F, Esling C. Journal of Applied Crystallography[J], 1992, 25(6):724-730.
    [22] Banerjee R, Bhattacharyya D, Collins P C,et al. Acta Materialia[J], 2004, 52(2):377-385.
    [23] Gey N, Humbert M, Acta Materialia[J], 2002, 50(2), 277-287
    [24] Zhang F Y(张凤英), Tan H(谭 华), Chen J(陈 静),et al. Chinese Journal of Lasers(中国激光)[J], 2012, 39(06): 82-88
    [25] Liu Bocao(刘伯操), Wu Shiping(吴世平), Hua Jun(华俊).Titanium and Copper Alloys,China Aeronautical Materials Handbook[M],Beijing: Standards Press of China. 2002.1.(2)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张凤英,杨森,黄开虎,陈曦,陈永楠,梅敏,王猛,谭华.基于不同Mo添加的激光立体成形Ti-6Al-xMo合金的显微组织演化和力学性能研究[J].稀有金属材料与工程,2022,51(6):2105~2114.[zhangfengying, yangsen, huangkaihu, chenxi, chenyongnan, meimin, wangmeng, tanhua. Microstructure Evolution Mechanism And Mechanical Properties of Laser Solid Forming Ti-6Al-xMo Alloys Based On Different Mo Addition[J]. Rare Metal Materials and Engineering,2022,51(6):2105~2114.]
DOI:10.12442/j. issn.1002-185X.20210507

复制
文章指标
  • 点击次数:384
  • 下载次数: 990
  • HTML阅读次数: 104
  • 引用次数: 0
历史
  • 收稿日期:2021-06-10
  • 最后修改日期:2021-08-06
  • 录用日期:2021-09-01
  • 在线发布日期: 2022-07-06
  • 出版日期: 2022-06-29