+高级检索
激光增材制造Ti6Al4V点阵结构的抗压吸能特性
作者:
作者单位:

1.华侨大学制造工程研究院;2.长沙新材料产业研究院有限公司;3.厦门软件职业技术学院

中图分类号:

TN249

基金项目:

国家自然科学基金(No. 11772135)、国家自然科学基金(No. 51975221)、福建省自然科学基金面上项目(2020J01088)、福建省增材制造创新中心开放基金(ZCZZ202-27)


Compressive Behavior and Energy Absorption of Ti6Al4V Lattice Structure Fabricated by Laser Additive Manufacturing
Author:
Affiliation:

1.Institute of Manufacturing Engineering,Huaqiao University;2.Xiamen Institute of Software Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    人体骨骼受到碰撞后的断裂过程伴随着能量吸收,多孔骨植入体的设计需考虑结构的抗压吸能特性。在空间尺寸(20 mm×20 mm×30 mm)内,通过拓扑优化设计和激光增材制造技术制备不同胞元尺寸和相对密度的Ti6Al4V点阵结构,采用熔池监控、单向压缩实验和有限元仿真方法,探究了点阵结构的表面质量、断裂形变规律和吸能特性。结果表明,点阵结构的结构参数受熔池温度场和粉末支持力的影响;点阵结构的抗压行为遵循弹脆性变化规律,断裂带与制造方向呈45度;点阵结构的断裂机制为韧性断裂,裂纹沿内部微孔洞分布方向扩展;能量吸收能力与相对密度成正比关系,与胞元尺寸成反比;能量吸收效率与相对密度成反比,与胞元尺寸均成正比关系。

    Abstract:

    The fracture process of human bone under impacting is accompanied by the absorption of energy. The design of porous implant should consider compressive behavious and energy absorption characteristics of the whole structure. A series of lattice structures with different unit cell size and relative density is established by topology optimization designing and laser additive manufacturing fabricating, and the suface quality, fracture and deformation regularity and energy absorption performance of lattice structure are investigated by melt pool monitoring, unidirectional compression test and finite element simulation. The results show that the structure parameters of lattice structure are affected by the temperature field of molten pool and the supporting force of powder layer. The compressive behavious of lattice structures follows the law of elasticity and brittleness foam, the crush band forms at an angle of 45o with the fabricating direction. The fracture mechanism of lattice structure is ductile fracture, and the crack propagation direction is distributed along the internal micro-pores. The energy absorption capacity is directly proportional to the relative density and inversely proportional to unit cell size. The energy absorption efficiency is inversely proportional to the relative density and proportional to the cell size.

    参考文献
    [1] Lu Bingheng(卢秉恒). China Mechanical Engineering[J], 2020, 31(1): 19
    [2] Krishna B V, Bose S, Bandyopadhyay A. Acta Biomaterialia[J], 2007, 3(6): 997
    [3] Long M, Rack H J. Biomaterials[J], 1998, 19(18): 1621
    [4] Li J P, de Wijn J R, van Blitterswijk C A et al. J Biomed Mater Res A[J], 2010, 92(1): 33
    [5] Zhang L, Song B, Yang L et al. Acta Biomaterialia[J], 2020, 112: 298
    [6] Xu Y, Zhang D, Hu S et al. Journal of the Mechanical Behavior of Biomedical Materials[J], 2019, 99: 225
    [7] Wang L, Kang J, Sun C et al. Materials Design[J], 2017, 133: 62
    [8] Mazur M, Leary M, Sun S et al. The International Journal of Advanced Manufacturing Technology[J], 2016, 84(5-8): 1391
    [9] Maskery I, Aremu A O, Simonelli M et al. Experimental Mechanics[J], 2015, 55(7): 1261
    [10] Choy S Y, Sun C, Leong K F et al. Materials Design[J], 2017, 131: 112
    [11] Li Yunhe(李云鹤), Zhang Chunqiu(张春秋), Liu Jingna(刘静娜) et al. Journal of Tianjin University of Technology[J], 2020, 36(1): 60
    [12] Zhang M, Yang Y, Wang D et al. Materials Science and Engineering: A[J], 2018, 736: 288
    [13] Bai L, Zhang J, Xiong Y et al. Additive Manufacturing[J], 2020, 34: 101222
    [14] Zhang L, Song B, Fu J J et al. Journal of Manufacturing Processes[J], 2020, 56: 1166
    [15] Li Xingyuan(李心远), Song Weidong(宋卫东), Chen Jian(陈键). Journal of Taiyuan University of Technology[J], 2019, 50(3): 386
    [16] Caouette C, Bureau M N, Vendittoli P A et al. Journal of the Mechanical Behavior of Biomedical Materials[J], 2015, 45:90
    [17] Lu Yichen(卢毅晨), Sun Zhonggang(孙中刚), Guo Yanhua(郭艳华) et al. Rare Metal Materials and Engineering[J], 2020, 49(6): 2067
    [18] Gibson L J, Ashby M F. Cellular Solids: Structure and Properties[M]. Cambridge: Cambridge University Press, 1999: 183
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐仰立,曹玄扬,李婷婷,谭援强,黄国钦.激光增材制造Ti6Al4V点阵结构的抗压吸能特性[J].稀有金属材料与工程,2022,51(7):2536~2544.[Xu Yangli, Cao Xuanyang, Li Tingting, Tan Yuanqiang, Huang Guoqin. Compressive Behavior and Energy Absorption of Ti6Al4V Lattice Structure Fabricated by Laser Additive Manufacturing[J]. Rare Metal Materials and Engineering,2022,51(7):2536~2544.]
DOI:10.12442/j. issn.1002-185X.20210513

复制
文章指标
  • 点击次数:681
  • 下载次数: 1450
  • HTML阅读次数: 105
  • 引用次数: 0
历史
  • 收稿日期:2021-06-14
  • 最后修改日期:2021-08-03
  • 录用日期:2021-08-06
  • 在线发布日期: 2022-07-29
  • 出版日期: 2022-07-27