+高级检索
TA32钛合金马鞍形零件热冲压工艺数值模拟
作者:
作者单位:

南京航空航天大学 直升机传动科学与技术国家重点实验室,江苏 南京 210016

基金项目:

航空重点基金项目Aviation Key Fund Project of china (20153021001)


Numerical Simulation of Hot Stamping Process for Saddle Shape Part of TA32 Titanium Alloy
Author:
Affiliation:

National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Fund Project:

Aviation Key Fund Project of China (20153021001)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    建立了TA32钛合金本构模型,在模具上添加了不同的拉延筋,并对其进行了优化以消除皱纹。使用Barlat 89和Hill 48屈服准则来比较有限元模拟的预测精度。通过热冲压成形实验,测量了TA32钛合金马鞍形零件的厚度分布,并与模拟结果进行比较。结果表明;添加X轴和Y轴拉延筋可以有效消除皱纹,实现马鞍形零件精确成形,并且无任何缺陷。采用Barlat 89屈服准则的有限元模型比采用Hill 48屈服准则的模型具有更好的预测精度,该有限元模拟具有较好的理论预测意义。研究了成形后零件的力学性能和显微组织,各项性能均达到了实际工程需要。

    Abstract:

    The constitutive model of TA32 titanium alloy was established, and different drawbeads were added on the die to eliminate the wrinkles. The Barlat 89 and Hill 48 yield criterions were used to compare the prediction accuracy of the finite element simulations. The saddle shape part of TA32 titanium alloy was hot-stamped, and the thickness distribution was measured and compared with the simulation results. Results show that the wrinkles can be effectively eliminated by adding the drawbeads along X-axis and Y-axis. The saddle shape part can be precisely formed without defects. The finite element model with Barlat 89 yield criterion has better prediction accuracy than that with Hill 48 yield criterion does, indicating that the finite element simulation has good theoretical prediction significance. The mechanical properties and microstructure of the hot-stamped part were investigated and it is found that they all meet the practical engineering requirements.

    参考文献
    [1] Banerjee D, Williams J C. Acta Materialia[J], 2013, 61(3): 844
    [2] Singh P, Pungotra H, Kalsi N S. Materials Today: Proceedings[J], 2017, 4(8): 8971
    [3] Cheng Chao, Chen Zhiyong, Li Hongen et al. Materials Science and Engineering A[J], 2021, 800: 140 362
    [4] Fan R, Yong W U, Chen M et al. Transactions of Nonferrous Metals Society of China[J], 2020, 30(4): 928
    [5] Liu Zhangguang, Li Peijie, Yin Xiyue et al. Rare Metal Materials and Engineering[J], 2018, 47(11): 3473 (in Chinese)
    [6] Ma B L, Wu X D, Li X J et al. Materials & Design[J], 2016, 94: 9
    [7] Wang K H, Kopec M, Chang S P et al. Materials & Design[J], 2020, 194: 108 948
    [8] Chen C, Chen M H, Xie L S et al. The International Journal of Advanced Manufacturing Technology[J], 2019, 103(1-4): 807
    [9] Wu Ronghua, Chen Minghe, Xie Lansheng et al. Rare Metal Materials and Engineering[J], 2019, 48(10): 3142 (in Chinese)
    [10] Gantar G, Pepelnjak T, Kuzman K. Journal of Materials Processing Technology[J], 2002, 130-131: 54
    [11] Naceur H, Guo Y Q, Batoz J L et al. International Journal of Mechanical Sciences[J], 2001, 43(10): 2407
    [12] Colgan M, Monaghan J. Journal of Materials Processing Technology[J], 2003, 132(1-3): 35
    [13] Grechnikov F, Khaimovich A, Alexandrov S. Journal of Materials Processing Technology[J], 2016, 234: 300
    [14] Wang X, Cao J. International Journal of Mechanical Sciences[J], 2000, 42(12): 2369
    [15] Hajari A, Morakabati M, Abbasi S M et al. Materials Science and Engineering A[J], 2017, 681: 103
    [16] Kotkunde N, Deole A D, Gupta A K et al. Materials & Design[J], 2014, 55: 999
    [17] Kim J B, Yang D Y, Yoon J W et al. International Journal of Plasticity[J], 2000, 16(6): 649
    [18] Kotkunde N, Deole A D, Gupta A K et al. Materials & Design[J], 2014, 63: 336
    [19] Neto D M, Oliveira M C, Alves J L et al. Materials & Design[J], 2014, 60: 368
    [20] Kotkunde N, Srinivasan S, Krishna G et al. Transactions of Nonferrous Metals Society of China[J], 2016, 26(3): 736
    [21] Liu Zhangguang, Li Peijie, Geng Linlin et al. Materials Science and Engineering A[J], 2017, 699: 71
    [22] Chen Can, Chen Minghe, Xie Lansheng et al. Rare Metal Materials and Engineering[J], 2019, 48(3): 827 (in Chinese)
    [23] Sudarsan C, Prasad K S, Hazra S et al. Journal of Manufacturing Processes[J], 2020, 56(A): 1099
    [24] Vel L, Demazeau G, Etourneau J. Materials Science Engineering B[J], 1991, 10(2): 149
    [25] Fan Ronglei, Chen Minghe, Wu Yong et al. Metals[J], 2018, 8(12): 985
    [26] Hill R. Proceedings of the Royal Society of London Series A[J], 1948, 193(1033): 281
    [27] Barlat F, Lian K. International Journal of Plasticity[J], 1989, 5(1): 51
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

宋飞,王宁,苏楠,陈明和,谢兰生.TA32钛合金马鞍形零件热冲压工艺数值模拟[J].稀有金属材料与工程,2022,51(9):3252~3262.[Fei Song, Ning Wang, Nan Su, Minghe Chen, Lansheng Xie. Numerical Simulation of Hot Stamping Process for Saddle Shape Part of TA32 Titanium Alloy[J]. Rare Metal Materials and Engineering,2022,51(9):3252~3262.]
DOI:10.12442/j. issn.1002-185X.20210691

复制
文章指标
  • 点击次数:352
  • 下载次数: 815
  • HTML阅读次数: 223
  • 引用次数: 0
历史
  • 收稿日期:2021-08-03
  • 最后修改日期:2021-09-23
  • 录用日期:2021-09-29
  • 在线发布日期: 2022-09-30
  • 出版日期: 2022-09-27