+高级检索
5083Al/1060Al/TA1/Ni/SUS304五层爆炸复合板退火组织演化及力学性能
作者:
作者单位:

1.西安建筑科技大学冶金工程学院;2.西安天力金属复合材料股份有限公司

中图分类号:

TG456.6

基金项目:

国家自然科学基金(51674187) 和陕西省科技统筹创新工程计划项目(2019ZDLGY05-03)


Microstructure evolution and mechanical properties of 5083Al/1060Al/TA1/Ni/SUS304 five-layer explosive clad sheet during annealing
Author:
Affiliation:

1.School of Materials Science and Engineering,Xi’an University of Architecture and Technology,Xi’an;2.Xi''an Tianli Clad Metal Materials Co,Ltd,Xi''an

Fund Project:

The National Natural Science Foundation of China ( 51674187) and the Key Industry Chain (Group)-Industrial Field in Shaanxi Province (2019ZDLGY05-03).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为改善5083Al和304不锈钢爆炸焊接质量,提升隔热效果,本研究采用1060Al、TA1和Ni作夹层材料,制备了具有热传导梯度的五层爆炸复合板。为消除爆炸焊接后的残余应力,减少绝热剪切带和微裂纹等缺陷,采用550℃/60min退火工艺对五层爆炸复合板进行退火处理,并通过SEM、EBSD和万能试验机等手段,分析研究了退火对其组织演化及力学性能的影响。结果表明:五层爆炸复合板的四个焊接界面均呈波形,且在界面处存在微裂纹、孔洞、绝热剪切带和漩涡区等缺陷。经退火处理,四个焊接界面均发生不同程度的再结晶,微裂纹、绝热剪切带等缺陷得到有效改善;5083Al/1060Al/TA1界面的β相和Al-Ti金属间化合物增多,TA1/Ni界面在原TiNi3熔化层的基础上新增TiNi熔化层和Ti2Ni熔化层。界面拉剪强度均有所降低,但均仍远高于相应国标使用要求;拉脱试样在5083Al/1060Al界面断裂分离。

    Abstract:

    In order to improve the quality of explosive welding of 5083Al and 304 stainless steel and improve the thermal insulation effect, in this paper, 1060Al, TA1, and Ni were used as interlayer materials to prepare a five-layer explosive composite plate with thermal conductivity gradient. In order to eliminate the residual stress after explosive welding and reduce defects such as adiabatic shear bands and micro-cracks, the five-layer explosive composite plate was annealed by 550℃/60min, and analyzed by means of SEM, EBSD, and the universal testing machine. The effect of annealing on its microstructure evolution and mechanical properties was studied. The results showed that the four welding interfaces of the five-layer explosive composite plate were all corrugated, and there were defects such as micro-cracks, holes, adiabatic shear bands, and vortex areas at the interfaces. After annealing, the four welding interfaces were recrystallized to different degrees, and the defects such as microcracks and adiabatic shear bands were effectively improved; On the basis of the original TiNi3 melting layer, the interface added a new TiNi melting layer and a new Ti2Ni melting layer. The tensile and shear strengths of the interface had decreased, but they were still far higher than the requirements of the corresponding national standards; the pull-off samples were fractured and separated at the 5083Al/1060Al interface.

    参考文献
    [1] Fedorov V, Uhlig T, Wagner G. Metals - Open Access Metallurgy Journal[J], 2021,S11(2), 217.
    [2] Zhang, Y., Li X., Zhang B., et al. Vacuum[J], 2017, 141:281-287.
    [3] Wang, T., Komarasamy M., Liu K., et al. Materials Science and Engineering A [J],2018,737: 85-89.
    [4] Clérico P, Mininger X, Prévond L., et al. Journal of Alloys and Compounds[J], 2019,798:67-8.
    [5] Azhari-Saray H, Sarkari-Khorrami M, Nademi-Babahadi A, et al. Intermetallics[J], 2020,124: 106876
    [6] Xia H, Tan C, Tian R, et al. Journal of Manufacturing Processes[J], 2020, 54: 347-358.
    [7] Shim J, Kang B, Kim I. Journal of Mechanical Science and Technology[J], 2017, 31(8): 3793-3801.
    [8] Du xiangpeng(杜向鹏),Liu Hongwei(刘洪伟),Guo cheng(郭成) , et al. Chinese Journal of Rare Metals[J], 2007, 36(A03): 3.
    [9] Zhou Q, Liu R, Zhou Q, et al. Materials Science and Engineering A[J], 2021, 820: 141559.
    [10] Aceves S M, Espinosa-Loza F, Elmer J W, et al. International Journal of Hydrogen Energy[J], 2015, 40(3): 1490-1503.
    [11] Wu X, Shi C, Fang Z, et al. Materials Design[J], 2021, 197: 109279.
    [12] Dai J, Yu B, Ruan Q, et al. Materials[J], 2020, 13(9):2053.
    [13] Habib M A, Keno H, Uchida R, et al. Journal of Materials Processing Technology[J], 2015, 217: 310-316.
    [14] Hokamoto K, Fujita M, Izuma T, et al. Metallurgical and Materials Transactions A[J], 1993, 24A:10(10).
    [15] Raghukandan K. Materials ence Forum[J], 2013, 767: 109-113.
    [16] Han J H, Ahn J P, Shin M C. Journal of Materials ence[J], 2003, 38(1): 13-18.
    [17] Pan C, Shi Y, Sun G, et al. Acta Metallrugica Sinica[J], 1997.
    [18] Srivastava N, Upadhyay A, Kumar S, et al. Trans Tech Publications[J], 2015: 306-309.
    [19] Aceves S M, Espinosa-Loza F, Elmer J W, et al. International Journal of Hydrogen Energy[J], 2015, 40(3): 1490-1503.
    [20] Mao Qiushui(毛秋水). Research on welding performance of aluminum-aluminum-steel composite materials for ships(舰船用铝—铝—钢复合材料焊接性能研究)[D]. Jiangsu University of Science and Technology(江苏科技大学), 2009.
    [21] Fang Z, Shi C, Sun Z, et al. Materials Research Express[J], 2019, 6(10): 1065f9.
    [22] Deng Y, Sheng G, Xu C, et al. Materials Design[J], 2013, 46: 84-87.
    [23] Yang D H, Luo Z A, Xie G M, et al. Materials Science and Engineering A[J], 2019, 753: 49-58.
    [24] Kundu S, Sam S, Chatterjee S.SMaterials Science and Engineering: A, 2011, 528(15):4910-4916.
    [25] Kundu S, Chatterjee S, Olson D, et al. Metallurgical Materials Transactions A[J], 2007, 38(9): 2053-2060.
    [26] Qiu R, Satonaka S, Iwamoto C. Materials Design[J], 2009, 30(9): 3686-3689.
    [27] Zhang T, Wang W, Zhang W, et al. Journal of Alloys and Compounds[J], 2017, 735: 1759-1768.
    [28] Zhou Heng(周恒). Microstructure and evolution process of TiNi alloy/Q235 steel explosive composite interface(TiNi合金/Q235钢爆炸复合界面微观结构及其演化过程)[D]. University of Science and Technology of China(中国科学技术大学), 2021.
    [29] Gloc M, Wachowski M, Plocinski T, et al. Journal of Alloys Compounds[J], 2016, 671: 446-451.
    [30] Qiang Z A, Rui L A, Qiang Z B, et al. Materials Science and Engineering: A[J], 2021,820:141559
    [31] Bataev I A, Lazurenko D V, Tanaka S, et al. Acta Materialia[J], 2017, 135: 277-289.
    [32] Yang M, Xu J, Ma H, et al. Composites Part B Engineering[J], 2021(1): 108685.
    [33] Ming Y A, Jx A, Dca B, et al. Applied Surface Science[J], 2021.
    [34] Wang C, Yu D, Niu Z, et al. Acta Materialia[J], 2020, 200: 101-115.
    [35] D.M. Fronczek, J. Wojewoda-Budka, Chulist R, et al. Materials Design[J], 2016, 91: 80-89.
    [36] Laeng J, Xiu Z, Xu X, et al. Physica Scripta[J], 2007, T129: 250-254.
    [37] Rosenthal I, Miriyev A, Tuval E, et al. Metallography Microstructure Analysis[J], 2014, 3(2):97-103.
    [38] Yang J H, Zhang L X, Sun Z, et al. Vacuum[J], 2017, 146:179-186.
    [39] Topolski K, Wiecinski P, Szulc Z, et al. Materials Design[J], 2014, 63: 479-487.
    [40] Zhou Y, Wang Q, Sun D L, et al. Journal of Alloys Compounds[J], 2011, 509(4): 1201-1205.
    [41] Liu J, Su Y, Xu Y, et al. Rare Metal Materials and Engineering[J], 2011, 40(5).
    [42] Sahul M, Sahul M, Lokaj J, et al. Journal of Materials Engineering and Performance[J], 2018, 27(11): 5665-5674.
    [43] Li H, Cao L, Liang X, et al. Metals[J], 2020, 10(12).
    [44] Shao X, Guo X, Han Y, et al. Materials Design[J], 2015, 65:1001-1010.
    [45] G Garmong, NE Paton, AS Argon. Metallurgical Transactions A[J], 1975, 6: 1269–1279
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

宋从斌,张聪惠,朱文光,李南南,何晓梅,查勇超.5083Al/1060Al/TA1/Ni/SUS304五层爆炸复合板退火组织演化及力学性能[J].稀有金属材料与工程,2023,52(5):1737~1745.[Song Congbin, Zhang Conghui, Zhu Wenguang, Li Nan nan, He Xiaomei, Zha Yongchao. Microstructure evolution and mechanical properties of 5083Al/1060Al/TA1/Ni/SUS304 five-layer explosive clad sheet during annealing[J]. Rare Metal Materials and Engineering,2023,52(5):1737~1745.]
DOI:10.12442/j. issn.1002-185X.20220305

复制
文章指标
  • 点击次数:316
  • 下载次数: 1041
  • HTML阅读次数: 58
  • 引用次数: 0
历史
  • 收稿日期:2022-04-13
  • 最后修改日期:2022-05-31
  • 录用日期:2022-05-31
  • 在线发布日期: 2023-06-08
  • 出版日期: 2023-05-29