+高级检索
高温低周疲劳损伤对FGH96合金力学性能影响的实验研究
作者单位:

1.海军航空大学青岛校区;2.91213部队

中图分类号:

TG146.1


Experimental Study on the Effects of High Temperature Low-cycle Fatigue Damage on Mechanical Properties of FGH96 Alloy
Author:
Affiliation:

1.Naval Aviation University Qingdao Campus;2.91213 Troops of PLA

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    通过设计FGH96粉末高温合金的高温低周疲劳试验、高温单轴拉伸试验,研究了不同应力水平下高温低周疲劳损伤对合金力学性能的影响,结合对断口形貌的观察,分析了合金力学性能改变的微观机理。结果表明,受位错运动的影响,合金的屈服强度、抗拉强度在损伤前期表现出上升的趋势;损伤后期,随着材料内部裂纹的不断增多及扩展,合金的弹性模量、抗拉强度不断退化。合金力学性能的变化与应力水平表现出明显的相关性。显微断口分析表明,随着损伤程度的增加,合金高温拉伸断裂模式由韧性逐渐向脆性转变,高温氧化加速了断裂模式的转变。

    Abstract:

    High temperature low-cycle fatigue tests and high temperature tensile tests were designed to study the effects of high temperature low-cycle fatigue damage on mechanical properties of FGH96 powder metallurgy superalloy. The microscopic mechanism of the change of the mechanical properties of FGH96 alloy was analyzed by observing the fractographs. Results show that the yield stress and tensile strength of FGH96 alloy show an upward trend in the early stage of damage due to the effects of dislocation motion; in the later stage of damage, the elasticity modulus and tensile strength of FGH96 alloy are continuously degraded as the internal cracks increase and expand. The change of the mechanical properties of FGH96 alloy shows a clear correlation with the stress level. The microfracture analysis shows that with the increase of the damage degree, the high temperature tensile fracture mode gradually changs from ductile to brittle, and is accelerated by high temperature oxidation.

    参考文献
    [1] An Zhen(安震),Han Hao(韩昊),Li Fulin(李福林) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J]. 2019,48(7):2297.
    [2] Wang Y, Wang X, Zhong B et al.International Journal of Fatigue[J].2019,122:116.
    [3] Huang Zhengqin(黄钲钦),Wang Yan(王岩),Liu Minxue(刘敏学) et al. The Chinese Journal of Nonferrous Metals(中国有色金属学报)[J]. 2021,31(07):1842.
    [4] Feng Yinli(冯引利),Wu Changbo(吴长波), Gao Weiqiang(郜伟强) et al.Journal of Aerospace Power (航空动力学报)[J].2012, 27(03):628.
    [5] Ye D. International Journal of Fatigue[J].2005,27 (9):1102.
    [6] Zhang Guodong(张国栋),Yu Huichen(于慧臣),He Yuhuai(何玉怀) et al. Journal of Aerospace Power(航空动力学报)[J]. 2007,(09):1544.
    [7] Wang X, Zhang W, Ni J et al. Materials Science and Engineering: A[J].2019,744:415.
    [8] Zhang C, Wang R, Song G. Construction and Building Materials[J].2020,252.
    [9] Yuan R, Li H, Huang H et al. International Journal of Damage Mechanics[J].2014,24(5):646.
    [10] Si Q, Ding Y, Zong L et al. International Journal of Fatigue[J]. 2022,160.
    [11] Ye D, Xu Y, Xiao L et al. Materials Science and Engineering: A[J].2010,527(16-17):4092.
    [12] Zhang L, Wang P, Dong J et al.Materials Science and Engineering: A[J].2013,587:168.
    [13] Miao G, Yang X, Shi D. Materials Science and Engineering: A[J]. 2016,668:66.
    [14] Miao Guolei(苗国磊),Yang Xiaoguang(杨晓光),Shi Duoqi(石多奇). Journal of Aerospace Power(航空动力学报)[J].2017, 32(02):424.
    [15] Li S, Yang X, Qi H et al.International Journal of Fatigue[J]. 2018,116:334.
    [16] Shi Y, Yang X, Yang D et al. International Journal of Fatigue[J]. 2020,137.
    [17] Feng Yefei(冯业飞),Zhou Xiaoming(周晓明),Zou Jinwen(邹金文) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J].2021,50(07): 2455.
    [18] Shi Y, Yang D, Yang X et al. International Journal of Fatigue[J]. 2020,131.
    [19] Xiao Yang(肖阳),Qin Haiqin(秦海勤),Xu Kejun(徐可君) et al. Acta Aeronauticaet Astronautica Sinica(航空学报) [J]. 2021,42 (05):328.
    [20] Xu Kejun(徐可君),Xiao Yang(肖阳),Qin Haiqin(秦海勤) et al. Acta Aeronauticaet Astronautica Sinica(航空学报) [J]. 2021,42 (05):168.
    [21] Fan Zhidong(范志东), Li Ji(李季), Ma Yichao(马翼超) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J]. 2019,48(04):1288.
    [22] Liu Xinling(刘新灵),Tao Chunhu(陶春虎),Feng Yinli(冯引利) et al. Damage Behavior and Life Prediction of Powder Metallurgy Superalloys(粉末高温合金损伤行为与寿命预测)[M]. Beijing:Aviation Industry Press(航空工业出版社), 2018.
    [23] Xuan Fuzhen(轩福贞),Zhao Peng(赵鹏).Cyclic Viscoplasticity Behaviour and Constitutive Theory of High Temperature Structures(高温构件循环黏塑性行为及本构理论)[M]. Beijing: Science Press(科学出版社),2021.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李政广,徐可君,秦海勤,肖阳.高温低周疲劳损伤对FGH96合金力学性能影响的实验研究[J].稀有金属材料与工程,2023,52(7):2511~2518.[Li Zhengguang, Xu Kejun, Qin Haiqin, Xiao Yang. Experimental Study on the Effects of High Temperature Low-cycle Fatigue Damage on Mechanical Properties of FGH96 Alloy[J]. Rare Metal Materials and Engineering,2023,52(7):2511~2518.]
DOI:10.12442/j. issn.1002-185X.20220545

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-25
  • 最后修改日期:2023-06-01
  • 录用日期:2022-08-12
  • 在线发布日期: 2023-08-09
  • 出版日期: 2023-07-27