+高级检索
Ce联合Nb/Co改性稀土尾矿催化剂NH3-SCR性能及脱硝机理研究
作者:
作者单位:

1.内蒙古科技大学能源与环境学院;2.内蒙古科技大学

基金项目:

内蒙古自然科学(2019ZD13,2020BS05030);国家自然科学(51866013);内蒙古自治区本级事业单位引进人才科研启动支持经费


Study on Denitration Performance and Mechanism of NH3-SCR Catalyst for Modification of Rare Earth Tailings by Ce Combined with Nb/Co
Author:
Affiliation:

Key laboratory of Efficient and Clean Combustion,School of Energy and Environment,Inner Mongolia University of Science and Technology No Aerding Street,Kundulun District,Baotou,Inner Mongolia,P R China Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources,School of Energy and Environment,Inner Mongolia University of Science and Technology,Inner Mongolia,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    白云鄂博稀土尾矿含有Fe、Ce等利于催化脱硝的活性元素,作为天然矿物对环境友好且成本低,是做脱硝催化剂的天然原料,但稀土尾矿催化剂温度窗口较窄(350~450℃)。为拓宽稀土尾矿催化剂的温度窗口,用Ce、Nb、Co改性稀土尾矿,采用水热法制备了一系列Ce-M(Nb、Co)改性稀土尾矿催化剂,探究元素比例及元素种类对脱硝性能的影响。通过BET、XRD、XPS、H2-TPR和NH3-TPD对改性稀土尾矿进行表征分析,并利用In situ DRIFTS 技术对Ce-Co改性稀土尾矿的NH3-SCR机理进行了探究。结果显示,Ce-Nb(2:1)改性稀土尾矿在300~400℃脱硝效率最高为85%,Ce-Co(2:1)改性稀土尾矿在250~400℃脱硝效率能够达到90%。Nb和Co的加入提高了催化剂表面CeCO3F的分散度,暴露更多活性吸附位点。同时,元素之间的相互作用促进了电子的转移,Nb5+的形成阻碍了Ce4+的还原,调节了氧化还原性能,使得Ce-Nb改性稀土尾矿具有优异的N2选择性。而Co的加入提高了催化剂氧化还原能力,使得Co3+增加,进而提高Br?nsted酸性位的吸附强度,NH4+及Co3+-NH2能够首先与NO反应,形成NH3HNO及NH2NO等中间产物,催化剂表面同时遵循E-R机理和L-H机理,E-R机理占主导。

    Abstract:

    Bayan Obo rare earth tailings contain Fe, Ce and other active elements conducive to catalytic denitration. As a natural mineral, it is environment-friendly and low-cost. It is a natural raw material for denitration catalyst, but the temperature window of rare earth tailings catalyst is narrow (350-450℃). In order to broaden the temperature window of rare earth tailings catalysts, a series of Ce-M (Nb, Co) modified rare earth tailings catalysts were prepared by hydrothermal method. Exploring the effect of element ratio and element type on denitrification performance. In particular, the experimental materials are Bayan Obo rare earth tailings, cerium nitrate, niobium oxalate and cobalt nitrate. The mixed solution of Bayan Obo rare earth tailings and cerium nitrate is made, poured into the reactor, and then placed in the muffle furnace, hydrothermal at 120℃ for 12h. After washing with water and drying at 80 ℃, the Ce modified rare earth tailings catalyst was prepared. The preparation methods of other modified rare earth tailings catalysts are the same. The modified rare earth tailings were characterized and analyzed by BET, XRD, XPS, H2-TPR and NH3-TPD. Finally, the NH3-SCR mechanism of Ce-Co modified rare earth tailings was explored by in situ DRIFTS technology. The steady-state reaction is carried out at 350℃ and the transient reaction is carried out at 50-400℃, which can analyze the existing forms of adsorbed NH3 and NOx species in the catalytic process and their changes with temperature. Therefore, the NH3-SCR reaction mechanism of Ce co modified rare earth tailings catalyst is analyzed. The results show that the maximum denitration efficiency of Ce-Nb (2:1) modified rare earth tailings is 85% at 300-400℃, and the denitration efficiency of Ce-Co (2:1) modified rare earth tailings can reach 90% at 250-400℃. The addition of Nb and Co improved the dispersion of CeCO3F on the catalyst surface and exposed more active adsorption sites. At the same time, the interaction between elements promotes the transfer of electrons. The existence of Nb5+ hinders the reduction of Ce4+, regulates the redox performance, and makes the Ce-Nb modified rare earth tailings have excellent N2 selectivity. The addition of Co improves the redox capacity of the catalyst and increases Co3+. Further, the adsorption strength of Br?nsted acid site is improved. NH4+ and Co3+-NH2 can react with NO first, form intermediate products such as NH3HNO and NH2NO. The surface of the catalyst follows both E-R mechanism and L-H mechanism, and E-R mechanism is dominant.

    参考文献
    [1]Du Weilu(杜维鲁), Zhu Fahua(朱法华). China''s Environmental Protection Industry(中国环保产业)[J]., 2007, (12): 42-45.
    [2]Xiong Zhibo(熊志波). Shandong: Shandong University[D], 2013.
    [3]Xie Peng(谢鹏). Wuhan: Wuhan University of Technology[D], 2017.
    [4]Wu Shang(吴尚), Guo Zhigang(郭志刚), Li Yinsheng(李银生), et al. Power Generation Equipment(发电设备)[J], 2020, 34(04): 223-228.
    [5]Sher Ali, Yushi Li, Tianrui Zhang, et al. Molecular Catalysis[J], 2018, 461.
    [6]Hou Limin(侯丽敏), Yan Xiao(闫笑), Qiao Chaoyue(乔超越), et al. Chinese Journal of Rare Earth(中国稀土学报) [J]: 1-11.
    [7]Liu Fudong(刘福东), He Hong(贺泓), Ding Yun(丁云), et al. Proceedings of the 6th National Conference on Environmental Catalysis and Environmental Materials(第六届全国环境催化与环境材料学术会议论文集)[C]. 2009: 446-447.
    [8]Brunauer Stephen, Deming Lola S, Deming W. Edwards, et al. Journal of the American Chemical Society[J], 1940, 62: 1723-1732.
    [9]Seiichi Kondo(近藤精一), Tatsuo Ishikawa(石川达雄), Yuo Yasbe(安部郁夫). Adsorption Science[M]. Second Edition, Beijing: Chemical Industry Press, 2006.
    [10]Han Jin, Meeprasert Jittima, Maitarad Phornphimon, et al. The Journal of Physical Chemistry C[J], 2016, 120(3): 1523-1533.
    [11]Gong Xiangjun(贡湘君), Ye Fei(叶飞), Liu Rong(刘荣), et al. Functional Materials(功能材料)[J], 2015, 46(10): 10090-10094 10099.
    [12]Qiu Lu(邱露). Harbin: Harbin Institute of technology[D], 2016
    [13]Liu Xiong(刘雄). Chongqing: Chongqing University[D], 2014.
    [14]Zhang Runduo, Yang Wei, Luo Na, et al. Applied Catalysis B: Environmental[J], 2014, 146: 94-104.
    [15]Yu Gguofeng(于国峰), Gu Yueping(顾月平), Jin Ruiben(金瑞奔). Journal of Environmental Sciences(环境科学学报)[J], 2013, 33 (8): 2149-2157.
    [16]Fan R(樊荣), Yang B(杨波), Huang Q(黄琼), et al. Journal of Nanjing University of Technology (Natural Science Edition) (南京工业大学学报(自然科学版))[J], 2020,42 (06): 751-759.
    [17]Michalow-Mauke Katarzyna A, Lu Ye, Kowalski Kazimierz, et al. ACS Catalysis [J], 2015, 5(10): 5657-5672.
    [18]Pe?a Donovan A, Uphade Balu S, Reddy Ettireddy P, et al. The Journal of Physical Chemistry B[J], 2004, 108(28): 9927-9936.
    [19]Wu Zhongbiao, Jiang Boqiong, Liu Yue, et al. Environmental Science Technology [J], 2007, 41(16): 5812-5817.
    [20]Yao X J(姚小江), Ma K L(马凯莉), Zou W X(邹伟欣), et al. Journal of Catalysis(催化学报)[J], 2017, 38 (01): 146-159.
    [21]Gongshin Qi, Ralph T Yang, Ramsay Chang. Applied Catalysis B: Environmental [J], 2004, 51: 93-106.
    [22]Chen Liang, Li Junhua, Ge Maofa. Environmental Science Technology[J], 2010, 44(24): 9590-9596.
    [23]Song Liyun, Zhang Ran, Zang Simao, et al. Catalysis Letters[J], 2017, 147: 934-945.
    [24]Liu Zhaoqiang, Paul J Millington, Jillian E Bailie, et al. Microporous and Mesoporous Materials[J], 2007, 104(1-3): 159-170.
    [25]Liu Fudong, He Hong. [J]. Catalysis Today, 2010, 153: 70-76.
    [26]Liu Zhiming, Yi Yang, Li Junhua, et al. Chemical Communications[J], 2013, 49(70): 7726-7728.
    [27]Liu Kuo; Liu Fudong; Xie Lijuan, et al. Catalysis Science Technology [J], 2015, 5(4): 2290-2299.
    [28]. Zeng G(曾盖). Xiangtan: Xiangtan University[D], 2016.
    [29]Kobayashi Yuka. The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, general theory[J], 2000, 104(29): 6855-6860.
    [30]Kapteijn F, Singoredjo L, Andreini A, et al. Applied Catalysis B: Environmental[J], 1994, 3(2-3) : 173-189.
    [31]Xie Shangzhi, Li Lulu, Jin Lijian, et al. Applied Surface Science[J], 2020, 515(prepublish): 146014.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

侯丽敏,王甜甜,许杰,高红敏,武文斐. Ce联合Nb/Co改性稀土尾矿催化剂NH3-SCR性能及脱硝机理研究[J].稀有金属材料与工程,2023,52(7):2588~2598.[Limin Hou, Tiantian Wang, Jie Xu, Hongmin Gao, Wenfei Wu. Study on Denitration Performance and Mechanism of NH3-SCR Catalyst for Modification of Rare Earth Tailings by Ce Combined with Nb/Co[J]. Rare Metal Materials and Engineering,2023,52(7):2588~2598.]
DOI:10.12442/j. issn.1002-185X.20220573

复制
文章指标
  • 点击次数:388
  • 下载次数: 930
  • HTML阅读次数: 50
  • 引用次数: 0
历史
  • 收稿日期:2022-07-09
  • 最后修改日期:2023-07-12
  • 录用日期:2022-09-22
  • 在线发布日期: 2023-08-09
  • 出版日期: 2023-07-27