+高级检索
中温轧制对新型镍基高温合金微观组织和高温力学性能的影响
作者:
作者单位:

1.兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室;2.钢铁研究总院 高温合金新材料北京市重点实验室,北京

中图分类号:

TG146.1

基金项目:

国家重点研发计划资助(2017YFA0700703);国家自然科学基金资助(51661019);甘肃省科技重大专项项目(145RTSA004);兰州理工大学红柳一流学科建设计划项目


Effect of warm rolling on microstructure evolution and high temperature mechanical properties of a novel Ni-base superalloy
Author:
Affiliation:

1.State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals,Lanzhou University of Technology;2.Beijing Key Laboratory of Advanced High Temperature Materials,Central Iron and Steel Research Institute,Beijing

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本文采用EBSD、SEM、TEM和准静态高温拉伸试验研究了中温轧制变形量对新型镍基高温合金微观组织和高温(760 ℃)力学性能的影响。结果表明,中温轧制变形量对合金高温力学性能影响显著,相比于标准热处理(固溶处理+双级时效)合金试样的高温力学性能(σy=860 MPa,σuts=973 MPa和εf=3.5%),当中温轧制变形量为10%时,合金的σy提高了230 MPa,σuts提高了166 MPa,εf变化不明显,为4.1%;而当中温轧制变形量为80%时,合金的σy提高了190 MPa,σuts提高了165 MPa,εf大幅度增加,为22.5%,实现了合金高温强塑性匹配。760 ℃时合金强度和延伸率的提升是由于变形机制发生改变,随着变形量的增加,合金的主要变形机制由层错剪切向微孪生转变,微孪晶的形成既保证了合金的高温强度,又有利于延伸率的提高。

    Abstract:

    In this work, the influence of warm rolling deformation degree on the microstructure evolution and high temperature (760 ℃) mechanical properties of a novel Ni-based superalloy were investigated by EBSD, SEM, TEM and quasi-static high temperature tensile tests. The results show that the reduction of warm rolling can significantly influence the high temperature mechanical properties. The echancement of yield strength, ultimate tensile strength and elongation for high temperature mechanical properties of Ni-based superalloy processed by the warm rolling with the deformation reduction of 10%, compared to that of samples processed by stardard heat treatments, are 230 MPa, 166 MPa, and 4.1%, respectively. Further rolling deformation processing (80%) causes the evident increase (22.5%) of elongation, generating the excellent strength-ductility synergy effect. The results indicate that the increase of strength and ductility can attribute to the transformation of the doformnation mechanism when the tensile test is conducted at 760 ℃. The transition from stacking fault to micro twinning can obtain the high temperature tensile strength-ductility synergy.

    参考文献
    [1] Wang Huiyang(王会阳), An Yunqi(安云岐), Li Chengyu(李承宇) et al. Materials Reports(材料导报)[J], 2011, 25(S2): 482
    [2] Du Jinhui(杜金辉), Lv Xudong(吕旭东), Dong Jianxin(董建新) et al. Acta Metallurgica Sinica(金属学报)[J], 2019, 55(9): 1115
    [3] Gu Yuefeng(谷月峰), Cui Chuanyong(崔传勇), Yuan Yong(袁勇), Zhong Zhihong(钟志宏). Acta Metallurgica Sinica(金属学报)[J], 2015, 51(10): 1191
    [4] Zhang Rui(张瑞), Liu Peng(刘鹏), Cui Chuanyong(崔传勇) et al. Acta Metallurgica Sinica(金属学报)[J], 2021, 57(10): 1215
    [5] Zhang Beijiang(张北江), Huang Shuo(黄烁), Zhang Wenyun(张文云) et al. Acta Metallurgica Sinica(金属学报)[J], 2019, 55(9): 1095
    [6] Zhang Peng(张鹏), Zhu Qiang(朱强), Qin Heyong(秦鹤勇) et al. Materials Reports(材料导报)[J], 2014, 28(11): 27
    [7] Zhu C Z, Zhang R, Cui C Y et al. Journal of Alloys and Compounds[J], 2022, 905: 164167
    [8] Xu H, Zhang Z J, Zhang P et al. Scientific Reports[J], 2017, 7(1): 8046
    [9] Yan Minggao(颜鸣皋), Chen Xueyin(陈学印). Acta Metallurgica Sinica(金属学报)[J], 1964, 7(3): 307
    [10] Jiang He(江河), Dong Jianxin(董建新), Zhang Maicang(张麦仓) et al. Aviation Manufacturing Technology(航空制造技术)[J], 2021, 64(Z1): 62
    [11] Pan Qingsong(潘庆松), Cui Fang(崔方), Tao Nairong(陶乃镕) et al. Acta Metallurgica Sinica(金属学报)[J], 2022, 58(1): 45
    [12] Li Sujie, Zhu Qingsheng, Zheng Boda et al. Materials Science and Engineering: A[J], 2019, 758: 1
    [13] Bufford Daniel, Wang Haiyan, Zhang Xinghang. Journal of Materials Research[J], 2013,28(13): 1729
    [14] Abbas Mohammadi, Kaveh Edalati Diego Davi Coimbro et al. Materials Science and Engineering: A[J], 2020, 783: 139273
    [15] Zhang B B, Yan F K, Zhao M J et al. Acta Materialia[J], 2018, 151: 310
    [16] Wang Miao, Huang Xingwei, Xue Peng et al. Journal of Materils Science and Technology[J], 2022, 106: 162
    [17] Lu Lei(卢磊), Lu Ke(卢柯). Acta Metallurgica Sinica(金属学报)[J], 2010, 46(11): 1422
    [18] Tian Chenggang(田成刚), Tao Xipeng(陶稀鹏), Xu Ling(徐玲) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2021, 50(10): 3532
    [19] Qu Pengfei(屈鹏飞), Yang Wenchao(杨文超), Yue Quanzhao(岳全召) et al. Materials Reports(材料导报)[J], 2019, 33(23): 3971
    [20] Yuan Y, Gu Y F, Osada T et al. Scripta Materialia[J], 2012, 67(2): 137
    [21] Tian Chenggang, Han Guoming, Cui Chuanyong et al. Materials Design[J], 2015, 88: 123
    [22] Chen Jianjun, Ding Yutian, Zhang Xia et al. Vacuum[J], 2022, 203: 111322
    [23] Wang Xingmao, Ding Yutian, Yu Hongyao et al. Materials Science and Engineering: A[J], 2022, 847: 143293
    [24] Lian Yibo(连轶博), Yang Chunlei(杨春雷), Wang Guodong(王国栋) et al. Heat Treatment of Metals(金属热处理)[J], 2022, 47(4): 46
    [25] Ding Yutian(丁雨田), Gao Yubi(高钰璧), Dou Zhengyi(豆正义) et al. Acta Metallurgica Sinica(金属学报)[J], 2017, 53(6): 695
    [26] Gao Yubi, Ding Yutian, Chen Jianjun et al. Materials Science and Engineering: A[J], 2019, 767: 138361
    [27] Chen Jianjun(陈建军), Ding Yutian(丁雨田), Wang Kun(王琨) et al. Acta Metallurgica Sinica(金属学报)[J], 2021, 57(5): 641
    [28] Gao Yubi, Ding Yutian, Ma Yuanjun et al. Materials Science and Engineering: A[J], 2022, 831: 142188
    [29] Wojciech Polkowski, Adelajda Polkowska, Sebastian Lech. Journal of Alloys and Compounds[J], 2021, 860: 158418
    [30] Yi Hai-Long, Wei Daixiu, Xie Ren-Yi et al. Materials Science and Engineering: A[J], 2021, 819: 141390
    [31] Viswanathan G B, Sarosi P M, Henry M F et al. Acta Materialia[J], 2005, 53(10): 3041
    [32] Kolbe M. Materials Science and Engineering A[J], 2001, 319: 383
    [33] Yuan Yong, Gu Yuefeng, Cui Chuanyong et al. Advanced Engineering Materials[J], 2011, 13(4): 296
    [34] Cui C Y, Gu Y F, Yuan Y et al. Materials Science and Engineering: A[J], 2011, 528(16): 5465
    [35] Dcamps B, Raujol S, Coujou A et al, Philosophical Magazine[J], 2004, 84(1): 91
    [36] Lu Lei(卢磊), You Zesheng(尤泽升). Acta Metallurgica Sinica(金属学报)[J], 2014, 50(2): 129
    [37] Ni S, Wang Y B, Liao X Z et al. Acta Materialia[J], 2012, 60(6-7): 3181
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孔维俊,丁雨田,王兴茂,高钰璧,毕中南,杜金辉,甘斌.中温轧制对新型镍基高温合金微观组织和高温力学性能的影响[J].稀有金属材料与工程,2023,52(8):2859~2868.[Kong Weijun, Ding Yutian, Wang Xingmao, Gao Yubi, Bi Zhongnan, Du Jinhui, Gan Bin. Effect of warm rolling on microstructure evolution and high temperature mechanical properties of a novel Ni-base superalloy[J]. Rare Metal Materials and Engineering,2023,52(8):2859~2868.]
DOI:10.12442/j. issn.1002-185X.20220648

复制
文章指标
  • 点击次数:519
  • 下载次数: 1024
  • HTML阅读次数: 49
  • 引用次数: 0
历史
  • 收稿日期:2022-08-10
  • 最后修改日期:2022-09-17
  • 录用日期:2022-09-27
  • 在线发布日期: 2023-08-28
  • 出版日期: 2023-08-24