+高级检索
固体氧化物燃料电池阴极材料第一性原理研究进展
作者:
作者单位:

1.沈阳航空航天大学理学院;2.哈尔滨工业大学

基金项目:

国家自然科学(12104325)和辽宁省教育厅基础科研项目(JYT19048)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [93]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    固体氧化物燃料电池(SOFC)具有能量转换效率高和燃料适应性广等突出优势,被认为是未来最有前景的清洁能源技术之一。目前SOFC研究热点是降低工作温度到500~800℃中低温区,以降低运行成本、增加可靠性,进而加速SOFC的商业化进程。阴极作为SOFC的重要组元,合理的设计和优化中低温下对氧还原反应具有较高催化活性的阴极材料至关重要。具有钙钛矿结构或由钙钛矿结构衍生出的层状结构的电子-离子混合导电型(MIECs)氧化物是目前研究最多的SOFC阴极材料。第一性原理可以弥补实验方面信息的缺失,能够提供电子结构、几何参数、吸附能及过渡态等相关信息,可以为合理设计和开发高性能的新型SOFC阴极材料提供科学依据和理论指导。本文通过对钙钛矿阴极氧空位的形成及迁移,氧分子在阴极(包括贵金属引入)表面上的吸附、解离、扩散过程及其规律进行了综述并总结了我们前期的研究成果,最后针对当前研究存在的问题及今后钙钛矿阴极的计算模拟研究方向进行了总结与展望。

    Abstract:

    Solid oxide fuel cell (SOFC) possesses outstanding advantages of broad fuel sources and high energy conversion efficiency. It is considered one of the most promising clean energy technologies in the future. At present, the hot spot of SOFC research is to reduce the working temperature to 500 ~ 800℃ low temperature zone. This can reduce the operating cost, increase the reliability and accelerate the commercialization process of SOFC. The cathode is an important component of SOFC. It is very important to design and optimize cathode materials with high activity for oxygen reduction reaction. The electron-ion mixed conductive (MIECs) oxide with perovskite structure or layered structure derived from perovskite structure are the most studied SOFC cathode materials. First principles can compensate for the lack of experimental information. It has proved to be a powerful tool to elucidate reaction mechanism as the technique can provide electronic structure, geometrical parameters, adsorption energy and transition state information. It can provide scientific basis and theoretical guidance for rational design and development of high performance new SOFC cathode materials. This article reviewed the formation and migration of oxygen vacancies in perovskite cathode and the adsorption, the dissociation, the transmission process of oxygen on the cathode surface (including the introduction of precious metals) and summarized our previous research results. Finally, the problems of current research and the future research direction of perovskite cathode simulation are summarized and prospected.

    参考文献
    [1]Cao, D.; Zhou, M.-Y.; Liu, Z.-J.; Yan, X.-M.; Liu, J. J. Inorg. Mater., 2020, 35, 9. (in Chinese) (曹丹, 周明扬, 刘志军, 颜晓敏, 刘江, 无机材料学报, 2020, 35, 9.)
    [2]Xu, H.; Zhang, L. Acta Phys. Sin., 2021, 70, 128801. (in Chinese) 徐晗, 张璐. 物理学报, 2021, 70, 128801.
    [3]Shin, J. F.;Xu, W.;Zanella, M.;Dawson, K.;Savvin, S. N.;Claridge, J. B.;Rosseinsky, M. J. Nat. Energy, 2017, 2,16214.
    [4]Lin, Y.-C.; Luo, L.-H.; Wu, Y.-F.; Chen, L.; Shi, J.-J, Sun, L.-L. Rare Metal Materials and Engineering, 2018, 47, 254.(in Chinese) (林囿辰,罗凌虹,吴也凡,程 亮,石纪军,孙良良, 稀有金属材料与工程, 2018, 47, 254)
    [5]Lü, Z.-W.; Han, M.-F.; Sun, Z.-H.; Sun, K.-H.; Acta Chim. Sinica, 2021, 79, 763. (in Chinese) (吕泽伟, 韩敏芳, 孙再洪, 孙凯华, 化学学报,2021, 79, 763)
    [6]Singhal, S. C. Solid State Ionics, 2000, 135, 305.
    [7]Chen K. F.; Lv, Z.; Chen, X. J.; Ai, N.; Huang, X. Q.; Zhu, X. B.; Su, W. H. J. Power Sources, 2007, 172, 742.
    [8]Lei, Z.; Zhu, Q. S.; Zhao, L. J. Power Sources, 2006, 161, 1169.
    [9]Xia, C. R.; Rauch, W.; Chen, F. L.; Liu, M. L. Solid State Ionics, 2002, 149, 11.
    [10]Shao, Z. P.; Haile, S. M. Nature, 2004, 431, 170.
    [11]Druce, J.; Ishihara, T.; Kilner, J. Solid State Ionics, 2014, 262, 893.
    [12]Taskin, A. A.; Lavrov, A. N.; Ando, Y. Appl. Phys. Lett., 2005, 86, 091910.
    [13]Kim, G.; Wang, S.; Jacobson, A. J.; Reimus, L.; Brodersen, P.; Mims, C. A. J. Mater. Chem., 2007, 17, 2500.
    [14]Druce, J.; Tellez, H.; Burriel, M.; Sharp, M. D.; Fawcett, L. J.; Cook, S. N.; Mcphail, D. S.;? Ishihara, T.; Brongersmac, H. H.; Kilner, J. A. Energy Environ. Sci., 2014, 7, 3593.
    [15]毛宗强,王城,低温固体氧化物燃料电池,上海,2013,p122.
    [16]Fleig, J. Annu. Rev. Mater. Res., 2003, 33, 361.
    [17]Adler, S. B.; Chen, X. Y.; Wilson, J. R. J. Catal. 2007, 245, 91.
    [18]Kotomin, E. A.; Mastrikov, Y. A.; Merkle; R. Maier, J. Curr. Opin. Electroche., 2020, 19, 122.
    [19]Savioli, J.; Watson, G. W. Curr. Opin. Electroche., 2020, 21, 14.
    [20]Lu, X.; Yang, X.; Jia, L.; Chi, B.; Pu, J.; Li, J. Int. J. Hydrogen Energ., 2019, 44, 16359.
    [21]Choi, Y. M.; Mebane, D. S.; Lin, M. C.; Liu, M. L. Chem. Mater., 2007, 19, 1690.
    [22]Choi, Y. M.; Lin, M. C.; Liu, M. L. Angew. Chem., 2007, 119, 7352.
    [23]Pavone, M.; Ritzmann, A. M.; Carter, E. A. Energy Environ. Sci., 2011, 4, 4933.
    [24]Kresse, G.; Hafner, J. Phys. Rev. B, 1994, 49, 14251.
    [25]Kresse, G.; Furthmuller, J. Phys. Rev. B, 1996, 54, 11169.
    [26]Blochl, P. E. Phys. Rev. B, 1994, 50, 17953.
    [27]Kresse, G.; Joubert, D. Phys. Rev. B, 1999, 59, 1758.
    [28]Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. Z. Kristallogr., 2005, 220, 567.
    [29]冯刚,催化理论与计算,北京,2022,p103.
    [30]Zhou, Y. J.; Lü, Z.; Guo, P. Z.; Tian, Y. T.; Huang, X. Q.; Su, W. H. Appl. Surf. Sci., 2012, 258, 2602.
    [31]Zhou, Y. J.; Lü, Z.; Wei, B.; Zhu, X. B.; Huang, X. Q.; Jiang, W.; Su, W. H. J.Power Sources, 2012, 209, 158.
    [32]Zhou, Y. J.; Lü, Z.; Wei, B.; Zhu, X. B.; Yang, D.; Jiang, W.; Su, W. H. Fuel Cells, 2012, 12, 1048.
    [33]Zhou, Y. J.; Lü, Z.; Wei, B.; Wang, Z. H.; Zhu, X. B. Solid State Commun., 2015, 201, 31.
    [34]Zhou, Y. J.; Lü, Z.; Xu, S. F.; Xu, D.; Yang, Z. Fuel Cells, 2015, 15, 839.
    [35]Zhou, Y. J.; Lü, Z.; Xu, S. F.; Xu, D.; Yang, Z. Ionics, 2016, 22, 1153.
    [36]Zhou, Y. J.; Lü, Z.; Xu, S. F.; Xu, D.; Yang, Z.; Wei, B. Int. J. Hydrogen Energ., 2016, 41, 21497.
    [37]Zhou, Y. J.; Lü, Z.; Xu, S. F.; Xu, D.; Wei, B. Solid State Commun., 2020, 311, 113871.
    [38]Wang, W.; Jiang, S. P. Solid State Ionics, 2006, 177, 1361.
    [39]Israel, C.; Calderon, M. J.; Mathur, N. D. Mater. Today, 2007, 10, 24.
    [40]Mastrikov, Y. A.; Heifets, E.; Kotomin, E. A.; Maier, J. Surf. Sci., 2009, 603, 326.
    [41]Aniagyei, A.; Kwawu, C.; Kwakye, R.; Antwi, B.-Y.; Owusu, J.-O. Mater. Renew. Sustain., 2021, 10, 15.
    [42]Kotomin, E. A.; Mastrikov, Y. A.; Heifets, E.; Maier, J. Phys. Chem. Chem. Phys., 2008, 10, 4644.
    [43]Piskunov, S.; Jacob, T.; Spohr, E.; Phys. Rev. B, 2011, 83, 073402.
    [44]Mastrikov, Y. A.; Merkle, R.; Heifets, E.; Kotomin, E. A.; Maier, J. J. Phys. Chem. C, 2010, 114, 3017.
    [45]Choi, Y. M.; Lynch, M. E.; Lin, M. C.; Liu, M. J. Phys. Chem. C, 2009, 113, 7290.
    [46]Yu, L.; Yu, F.-Y.; Yuan, L.-L.; Cai, W.-Z.; Liu, J.; Yang, C.-H.; Liu, M.-L. Acta Phys.-Chim. Sin. 2016, 32, 503. (in Chinese ) 余亮,于方永,苑莉莉,蔡位子,刘 江,杨成浩,刘美林,物理化学学报,2016, 32, 503.
    [47]Zhou, W.; Shao, Z.; Liang, F.; Chen, Z. G.; Zhu, Z.; Jin, W.; Xu, N.; J. Mater. Chem., 2011, 21, 15343.
    [48]Uchida, H.; Arisaka, S.; Watanabe, M. Solid State Ionics, 2000, 135, 347.
    [49]Watanabe, M.; Uchida, H.; Shibata, M.; Mochizuki, N.; Amikura, K. J. Electrochem. Soc., 1994, 141, 342.
    [50]Ming, C.-B.; Ye, D.-Q.; Liu, Y.-L.; Yang, L. EnvironmentalScience. 2008, 29, 576. (in Chinese )明彩兵, 叶代启, 刘艳丽, 杨力. 环境科学, 2008, 29, 576.
    [51]Haanappel, V. A. C.; Rutenbeck, D.; Mai, A.; Uhlenbruck, S.; Sebold, D.; Wesemeyer, H.; Rowekamp, B.; Tropartz, C.; Tietz, F. J. Power Sources, 2004, 130, 119.
    [52]Huang, T. J.; Chou, C. L. Fuel Cell, 2010, 10, 718.
    [53]Watanabe, M.; Uchida, H.; Shibata, M.; Mochizuki, N.; Amikura, K. J. Electrochem. Soc. 1994, 141, 342.
    [54]Tietz, F.; Haanappel, V. A. C.; Mai, A.; Mertens, J.; Stover, D. J. Power Sources, 2006, 156, 20.
    [55]Liu, Z.; Liu, M. F.; Yang, L.; Liu, M. L. J. Energy Chem., 2013, 22, 555.
    [56]Jia, W. H.; Huang, Z. N.; Sun, W.; Wu, L.; Zheng, L.; Wang, Y. Q. Huang, J. B.; Yang, X.; Lv, M.; Ge, L. J. Power Sources, 2021, 490, 229564.
    [57]Dong, Y-L.; Li, Z.-B.; Wang, A.; Hua, S.-Y. Chinese Journal of Engineering, 2022, 44, 1014. (in Chinese) 董雨龙,李宗宝,王傲,花仕洋,工程科学学报,2022, 44, 1014.
    [58]Yang, W. Q.; Wang, Z. B.; Wang, Z. Q.; Yang, Z. H.; Xia, C. R.; Peng, R. R.; Wu, X. J.; Lu, Y. L. ACS Appl. Mater. Inter., 2014, 6, 21051.
    [59]Wang, Z. B.; Peng, R. R.; Zhang, W. H.; Wu, X. J.; Xia, C. R.; Lu, Y. L. J. Mater. Chem. A, 2013, 1, 12932.
    [60]Wei, M. R.; Li, H. Z.; Guo, G. L.; Liu, Y. H.; Zhang, D. J. Int. J. Hydrogen Energ., 2017, 42, 23180.
    [61]Wei, M. R.; Li, H. Z.; Guo, G. L.; Liu, Y. H.; Zhang, D. J. Appl. Surf. Sci., 2021, 562, 150218.
    [62]Druce, J.; Ishihara, T.; Kilner, J. Solid State Ionics, 2014, 262, 893.
    [63]Viitanen, M. M. Solid State Ionics, 2002, 150, 223.
    [64]Teraoka, Y.; Yamazoe, N.; Seiyama, T. J. Surf. Sci. Soc. Jpn., 1988, 9, 153.
    [65]Ding, H.; Virkar, A. V.; Liu, M.; Liu, F. Phys. Chem. Chem. Phys., 2013, 15, 489.
    [66]Chen, D. J.; Shao, Z. P. Int. J. Hydrogen Energ., 2011, 36, 6948.
    [67]Patra, H.; Rout, S. K.; Pratihar, S. K.; Bhattacharya, S. Int. J. Hydrogen Energ., 2011, 36, 11904.
    [68]Zhou, W.; Ran, R.; Shao, Z.; Zhuang, W.; Jia, J.; Gu, H.; Jin, W.; Xu, N. Acta Mater., 2008, 56, 2687.
    [69]Zhukovskii, Y.; Kotomin, E. A.; Evarestov, R. A.; Ellis, D. E. Int. J. Quantum Chem., 2007, 107, 2956.
    [70]Mastrikov, Y. A.; Kuklja, M. M.; Kotomin, E. A.; Maier, J. Energy Environ. Sci., 2010, 3, 1544.
    [71]Kotomin, E. A. Mastrikov, Y. A.; Kuklja, M. M.; Merkle, R.; Roytburd, A.; Maier, J. Solid State Ionics, 2011, 188, 1.
    [72]Gangopadhayay, S.; Inerbaev, T.; Masunov, A. E.; Altilio, D.; Orlovskaya, N. ACS Appl. Mater. Inter., 2009, 1,1512.
    [73]Gangopadhayay, S.; Masunov, A. E.; Inerbaev, T.; Mesit, J.; Guha, R. K.; Sleiti, A. K.; Kapat, J. S. Solid State Ionics, 2010, 181,1067.
    [74]Lu, X.-K.; Yang, X.; Jia, L.-C.; Chi, B.; Pu, J.; Li, J. Int. J. Hydrogen Energ., 2019, 44, 16359.
    [75]Kharton, V. V.;Yaremchenko, A. A.; Shaula, A. L. J. Solid State Chem., 2004, 177, 26.
    [76]Mauvy, F.; Lalanne, C.; Bassat, J. M.; Grenier, J. C.; Zhao, H. J. Eur. Ceram. Soc., 2005, 25, 2669.
    [77]Boehm, E.; Bassat, J. M.; Dordor, P.; Mauvy, F.; Grenier, J. C.; Stevens, P. Solid State Ionics, 2005, 176, 2717.
    [78]Tealdi, C.; Ferrara, C.; Malavasi, L.; Mustarelli, P.; Ritter, C.; Chiodelli, G.; Fernandez, Y. A. Phys. Rev. B, 2010, 82, 174118.
    [79]Akbay, T.; Staykov, A.; Druce, J.; Tellez, H.; Ishihara, T.; Kilner, J. A. J. Mater. Chem. A, 2016, 4, 13113.
    [80]Read, M. S. D.; Islam M. S.; King, F.; Hancock, F. E. J. Phys. Chem. B, 1999, 103, 1558.
    [81]Granados, X.; Fontcuberta, J.; Valletregi, M.; Sayagues, M. J.; Gonzalezcalbet, J. M. J. Solid State Chem. 1993, 102, 455.
    [82]Zhou, J.; Chen, G.; Wu, K.; Cheng, Y. J. Phys. Chem. C, 2013, 117, 12991.
    [83]Zhou, J.; Chen, G.; Wu, K.; Cheng, Y.; Peng, B.; Guo, J.; Jiang, Y. Appl. Surf. Sci., 2012, 258, 3133.
    [84]Parfifitt, D.; Chroneos, A.; Tarancon, A.; Kilner, J. A. J. Mater. Chem. 2011, 21, 2183.
    [85]Antipinskaya, E. A.; Marshenya, S. N.; Politov, B. V.; Suntsov, A. Y. Solid State Ionics, 2019, 339, 115002.
    [86]Zhou, Q.; He, T.; Ji, Y. J. Power Sources, 2008, 185, 754.
    [87]Zhang, W.-R.; Zhang, Z.-H.; Gao, L.-G.; Ma, T.-L. Prog. Chem., 2016, 28, 961. (in Chinese). (张文锐, 张智慧, 高立国, 马廷丽, 化学进展, 2016, 28, 961).
    [88]Taskin, A. A.; Lavrov, A. N.; Ando, Y. Appl. Phys. Lett., 2005, 86, 091910.
    [89]Seymour, I. D.; Chroneos, A.; Kilner, J. A.; Grimes, R. W. Phys. Chem. Chem. Phys., 2011, 13, 15305.
    [90]Hermet, J.; Geneste, G.; Dezanneau, G. Appl. Phys. Lett., 2010, 97, 174102.
    [91]Zhang, Q.; Wu, X.; Kan, E. Curr. Appl. Phys., 2016, 16, 1094.
    [92]Seymour, I. D.; Tarancón, A.; Chroneos, A.; Parfifitt, D.; Kilner, J. A.; Grimes, R. W. Solid State Ionics, 2012, 216, 41.
    [93]Anjum, U.; Agarwal, M.; Khan, T. S.; Haider, M. A. Ionics, 2020, 26, 1307.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周永军,吕喆,徐世峰,杨旭,徐丹.固体氧化物燃料电池阴极材料第一性原理研究进展[J].稀有金属材料与工程,2023,52(9):3273~3282.[zhou YongJun, lv zhe, Xu shifeng, Yang xu, Xu Dan. First-principles research progress of cathode materials for solid oxide fuel cells[J]. Rare Metal Materials and Engineering,2023,52(9):3273~3282.]
DOI:10.12442/j. issn.1002-185X.20220700

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-03
  • 最后修改日期:2022-12-06
  • 录用日期:2023-01-05
  • 在线发布日期: 2023-09-25
  • 出版日期: 2023-09-21