+高级检索
基于金属增材制造的密集纵向翅片套管换热单元 特性研究
作者:
作者单位:

1.广东能源集团科学技术研究院有限公司;2.四川大学空天科学与工程学院

基金项目:

国家自然科学基金资助(项目号52076143)


Study on Characteristics of Double-Pipe Heat Exchanger Units with Densely Longitudinal Fins Based on Metal Additive Manufacturing
Fund Project:

国家自然科学基金资助(项目号52076143)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为提高热管换热器的性能和紧凑度,设计并采用金属增材制造获得了直翅片型(DPHE-1)和周期排列翅片型(DPHE-2)两类密集纵向翅片套管换热单元。通过剖切及几何检测,总结了制造偏差分布特点,显示其内部结构完整。通过光学检测,显示出倾斜翅片两侧的粗糙度分布不均。采用稳态传热实验方法对四种密集纵向翅片套管换热单元进行了传热特性研究。结果显示,由于换热面积的增大和流动掺混作用的增强,在Re=2000~15000工况范围内,DPHE-2的平均传热努塞尔数是DPHE-1的1.3~1.4倍,DPHE-2的平均阻力系数是DPHE-1的12.6~28.6倍。对比综合传热性能,直翅片型中的长翅片结构,即DPHE-1-B具有相对最优的强化传热性能。

    Abstract:

    Aimed at improving the performance and compactness of the heat pipe heat exchangers, different forms of double-pipe heat exchanger units with densely longitudinal fins are obtained by metal additive manufacturing method. The manufacturing deviation is summarized, which shows that the internal structure is complete. The optical measurement shows that the roughness distribution on both sides of the inclined fin is not uniform. The steady state experiments are implemented to investigate the heat transfer characteristics of four densely longitudinal fins enhanced compact double-pipe heat exchanger units. The configurations are classified into two categories of straight fin type (DPHE-1) and periodically arranged fin type (DPHE-2). Within the Re ranging from 2000 to 15000, the tested results show that, due to the increase of heat transfer area and the enhancement of flow mixing effect, the DPHE-2 gives 1.3~1.4 folds averaged Nusselt number and 12.6~28.6 averaged friction factor than the DPHE-1. Comparing their overall heat transfer performance, the long fin scheme in DPHE-1 type performs best.

    参考文献
    [1] Jouharah H, Chauhan A, Nanou T, et al. Heat pipe based systems-advances and applications[J]. Energy, 2017, 128: 72-754.
    [2] Behi H, Behi M, Karimi D. Heat pipe air-cooled thermal management system for lithium-ion batteries: High power applications[J]. Applied Thermal Engineering, 2021, 183.
    [3] Yu Hongxing(余红星), Ma Yugao(马誉高), Zhang Zhuohua(张卓华), et al. Initiation and Development of Heat Pipe Cooled Reactor[J]. Nuclear Power Engineering, 2019, 40(4): 1-8.
    [4] Liu Ye(刘叶), Zhou Lei(周磊), Zan Yuanfeng(昝元峰), et al. Initiation and Development of Heat Pipe Cooled Reactor[J]. Nuclear Power Engineering, 2016, 37(6): 1-8.
    [5] Dobson R T, Laubscher R. Heat Pipe Heat Exchanger for High Temperature Nuclear Reactor Technology[J]. Frontiers in Heat Pipes, 2013, 4(2).
    [6] Dawood H K, Mohammed H A, Chesidik N A. Forced, natural and mixed-convection heat transfer and fluid flow in annulus: A review[J]. International Communications in Heat and Mass Transfer, 2015, 62: 45-57.
    [7] Omidi M, FIarhad M, Jafari M. A comprehensive review on double pipe heat exchangers[J]. Applied Thermal Engineering, 2017, 110: 1075-1090.
    [8] Hangi M, Rahbari A, Lipinaki W. Design improvement of compact double-pipe heat exchangers equipped with tube-side helical insert and annulus-side helical strip: Hydrothermal and exergy analyses[J]. Applied Thermal Engineering, 2021, 190.
    [9] Maakoul E A, Metoui E M, Abdellah B A, et al. Numerical investigation of thermohydraulic performance of air to water double-pipe heat exchanger with helical fins[J]. Applied Thermal Engineering, 2017, 127: 127-139.
    [10] Mao S, Zhou T, Wei D, et al. Modeling of heat transfer of supercritical water in helical finned double pipe[J]. International Journal of Heat and Mass Transfer, 2021, 180.
    [11] Fan J F, Ding W K, Zhang J F, et al. A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving[J]. International Journal of Heat and Mass Transfer, 2009, 52: 33-44.
    [12] Yu B, Nie J H, Wang Q W, et al. Experimental study on the pressure drop and heat transfer characteristics of tubes with internal wave-like longitudinal fins[J]. Heat and Mass Transfer, 1999, 35(1): 65-73.
    [13] Braga C V M, Saboya F E M. Turbulent heat transfer, pressure drop and fin efficiency in annular regions with continuous longitudinal rectangular fins[J]. Experimental Thermal and Fluid Science, 1999, 20(2): 55-65.
    [14] Yu B, Tao W Q. Pressure drop and heat transfer characteristics of turbulent flow in annular tubes with internal wave-like longitudinal fins[J]. Heat and Mass Transfer, 2004, 40(8): 643-651.
    [15] Syed K S, Ishaq M, Iqbal Z, et al. Numerical study of an innovative design of a finned double-pipe heat exchanger with variable fin-tip thickness[J]. Energy Conversion and Management, 2015, 98: 69-80.
    [16] Kumar S, Vasudev Karanth K, Murthy K. Numerical study of heat transfer in a finned double pipe heat exchanger[J]. World Journal of Modelling and Simulation, 2015, 11(1): 43-54.
    [17] Stimpson C K, Snyder J C, Thole K A, et al. Roughness effects on flow and heat transfer for additively manufactured channels[J]. Journal of Turbomachinery, 2016, 138(5).
    [18] Stimpson C K, Snyder J C, Thole K A, et al. Scaling roughness effects on pressure loss and heat transfer of additively manufactured channels[J]. Journal of Turbomachinery, 2017, 139(2).
    [19] Kline S J, McClintock F A. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1953, 75: 3-8.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李明飞,陈伟.基于金属增材制造的密集纵向翅片套管换热单元 特性研究[J].稀有金属材料与工程,2023,52(11):3794~3800.[Li Mingfei, Chen Wei. Study on Characteristics of Double-Pipe Heat Exchanger Units with Densely Longitudinal Fins Based on Metal Additive Manufacturing[J]. Rare Metal Materials and Engineering,2023,52(11):3794~3800.]
DOI:10.12442/j. issn.1002-185X.20220806

复制
文章指标
  • 点击次数:220
  • 下载次数: 896
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-10-15
  • 最后修改日期:2022-11-14
  • 录用日期:2022-11-24
  • 在线发布日期: 2023-11-27
  • 出版日期: 2023-11-22