+高级检索
高熔点差三元合金累积叠轧-扩散合金化制备工艺
作者:
作者单位:

1.北京科技大学;2.北京材料基因工程高精尖创新中心 北京科技大学 北京 北京科技大学现代交通金属材料与加工技术北京实验室 北京科技大学 北京

基金项目:

国家重点研发计划(项目号2018YFA0707300),国家自然科学基金(项目号51904029、52127802)


High difference melting point of ternary alloy by accumulative roll bonding-diffusion alloying preparation process
Author:
Affiliation:

1.北京科技大学;2.Beijing Advanced Innovation Center for Materials Genome Engineering,University of Science and Technology Beijing,Beijing,ChinaBeijing Laboratory of Metallic Materials and Processing for Modern Transportation,University of Science and Technology Beijing,Beijing,China

Fund Project:

The National Key Technologies R&D Program of China, The National Natural Science Foundation of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为解决高熔点差多元合金制备方法存在的元素偏析、合金性能受限、制备成本高等问题,提出了高熔点差组元合金的累积叠轧-扩散合金化制备新工艺。采用SEM、EDS、TEM、XRD和万能试验机表征了累积叠轧-扩散合金化Cu-21Ni-5Sn合金的组织和性能,研究了累积叠轧和阶梯式扩散热处理工艺对Cu-21Ni-5Sn合金成分均匀性的影响和机理,并揭示了后续时效制度对Cu-21Ni-5Sn合金性能的影响和机理。结果表明:通过累积叠轧7道次+650 ℃/5 h+1000 ℃/8 h阶梯真空扩散热处理工艺,制备出了元素误差小于5%、成分均匀的Cu-21Ni-5Sn合金。采用累积叠轧实现减薄中间层、缩短扩散距离,增加晶界、位错等原子扩散通道,低熔点Sn元素与Cu、Ni元素在650 ℃形成高熔点(Cu,Ni)3Sn金属间化合物临界层,在1000 ℃高温加速Cu、Ni元素扩散。Cu-21Ni-5Sn合金在40%预冷变形下于470 ℃时效60 min充分调幅分解,基体中析出致密的与基体共格的DO22及L12有序固溶体,与α铜基体之间的取向关系为(-1-1-1 )Cu//(-2-20)DO22,(-200)Cu//(-310)L12。合金抗拉强度达到峰值916 MPa,弹性模量为135.4 GPa,合金导电率达到6.23% IACS。

    Abstract:

    In order to solve the problems of elemental segregation, limited properties and high cost in the preparation of high difference of multi-alloys melting point, a new process of accumulative roll bonding (ARB)-diffusion alloying (DA) has been developed. The properties of the ARB-DA Cu-21Ni-5Sn alloy were characterized by SEM, EDS, TEM, XRD and the universal testing machine. The effects and mechanisms of the ARB and step diffusion heat treatment processes on the compositional homogeneity of the Cu-21Ni-5Sn alloy were investigated, and the effects and mechanisms of the subsequent aging regime on the properties of the Cu-21Ni-5Sn alloy were revealed. The results show that Cu-21Ni-5Sn alloy with less than 5% elemental error and homogeneous composition was prepared by ARB 7 passes + 650 ℃/5 h + 1000 ℃/8 h step vacuum diffusion heat treatment process. The Cu-21Ni-5Sn alloy was aged at 470 ℃ for 60 min under 40% pre-cooling deformation for 60 min to fully spinodal decomposition. Dense DO22 and L12 ordered solid solution with matrix with α-Cu matrix was(-1-1-1 )Cu//(-2-20)DO22, (-200)Cu//(-310)L12. The alloy reached tensile strength of 925 MPa, a modulus of elasticity of 135.4 GPa, and an alloy conductivity of 6.23% IACS.

    参考文献
    [1] Shi Yufan, Guo Chengjun, Chen Jinshui, et al. Materials Science and Engineering: A[J], 2021, 826: 142025
    [2] Ozawa A (小澤敦), Watanabe C (渡邊千尋), Monzen R (門前亮一), et al. Journal of the Japan Institute of Metals (日本金属学会誌)[J], 2014, 78(9): 344-349
    [3] Guo Zhongkai, Jie Jinchuan, Liu Shichao, et al. Materials Science and Engineering: A[J], 2019, 748: 85-94
    [4] Gao Minqiang, Chen Zongning, Kang Huijun, et al. Materials Science and Engineering: A[J], 2018, 715: 340-347
    [5] Hermann P, Morris D G. Metallurgical and Materials Transactions A[J], 1993, 25(7): 1403-1412
    [6] Goudeau P H, Naudon A, Welter J M, Scripta Metallurgica[J], 1988, 22(7): 1019-1022
    [7] Li Jiakang, Cheng Tan, Liu Yanbing, et al. Additive Manufacturing[J], 2022, 54: 102726
    [8] Liang Yaojian, Wang Linjing, Wen Yuren, et al. Nature Communications[J], 2018, 9(1): 4063
    [9] Enrique J L, Srivatsan T S. Journal of Materials Science[J], 2010, 45(2): 287-325
    [10] Zhang Zhijuan (张志娟), Zhang Bing (张兵), Zhang Shilin (张诗林), et al. Rare Metal Materials and Engineering (稀有金属材料与工程)[J],2020,49(9):3153~3162
    [11] Mahdavian M M, Khatami-Hamedani H, Abedi H R. Journal of Alloys and Compounds[J], 2017, 703: 605-613
    [12] Ye Nan, Ren Xueping, Liang Juhua. Journal of Materials Research and Technology[J], 2020, 9: 5524-5532
    [13] Zhang Xiaobo, Yu Yangbo, Liu Bin, et al. Journal of Alloys and Compounds[J], 2019, 783: 55-65
    [14] Tu Yingming, Wang Wenjing, Liu Xuefeng, et al. Journal of Alloys and Compounds[J], 2022, 924: 166587
    [15] Deng Yunlai, Xu Jinjun, Chen Jiaqiang, et al. Materials Science and Engineering: A[J], 2020, 795: 139975.
    [16] Mahdavian M M, Khodabandeh A R, Jafarian H R, et al. Journal of Alloys and Compounds[J], 2022, 925: 166711
    [17] Azimi M, Toroghinejad M R, Shamanian M, et al. Metals[J], 2017, 7: 1-14
    [18] Beke D L, Langer G A, Molnár G, et al. Philosophical Magazine[J], 2013, 93(16): 1960-1970
    [19] Sobiech M, Krüger C, Welzel U, et al. Journal of Materials Research[J], 2011, 26: 1482-1493
    [20] Jiang S, Lin P R, Heged?s Z, et al. Acta Materialia[J], 2021, 205: 116546
    [21] Guo Zhongkai, Jie Jinchuan, Liu Jiaming, et al. Journal of Alloys and Compounds[J], 2020, 848: 156275
    [22] Ouyang Yi, Gan Xueping, Li Zhou, et al. Materials Science and Engineering: A[J], 2017, 704: 128-137
    [23] Saito Y, Utsunomiya H, Tsuji N, et al. Acta Materialia[J], 1999, 47(2): 579-583.
    [24] Druzhinin A V, Rheingans B, Siol S, et al. Applied Surface Science[J], 2020, 508: 145254
    [25] Cao Furong, Zhou Bijin, Yin Bin, et al. The Chinese Journal of Nonferrous Metals[J], 2017, 27: 2434-2442
    [26] Li Chiaying, Duh Jenqgong. Journal of Materials Research[J], 2005, 20: 3118-3124
    [27] Wang S J, Liu C Y. Journal of Electronic Materials[J], 2006, 35(11): 1955-1960
    [28] Lin Chih-hao, Chen Sinn-wen, Wang Chao-hong. Journal of Electronic Materials[J], 2002, 31: 907-915
    [29] Chang Chienwei, Yang Suchun, Tu Chunte, et al. Journal of Electronic Materials[J], 2007, 36: 1455-1461
    [30] Wang S J, Liu C Y. Journal of Electronic Materials[J], 2003, 32: 1303-1309
    [31] Paz A E, Puente Y, Dunand D C. Intermetallics[J], 2018, 101: 108-115
    [32] Li Ruidi, Yuan Tiechui, Liu Xiaojun, et al. Scripta Materialia[J], 2016, 110: 105-108
    [33] Yu Chiyang, Chen Weiyu, Duh Jenqgong. Intermetallics[J], 2012, 26: 11-17
    [34] Lai Yanqing, Chen Shi, Ren Xiaolei, et al. Acta Metallurgica Sinica (English Letters)[J], 2022, 35: 1912-1924
    [35] Li J F, Mannan S H, Clode M P, et al. Acta Materialia[J], 2006, 54(11): 2907-2922
    [36] Zhou Y, Gale W F, North T H. International Materials Reviews[J], 1995, 40(5): 181-196
    [37] Bosco N S, Zok F W. Acta Materialia[J], 2004, 52(10): 2965-2972
    [38] Spooner S, Lefevre B G. Metallurgical Transactions A[J], 1980, 11: 1085-1093
    [39] Ouyang Yi, Gan Xueping, Zhang Shizhong, et al. The Chinese Journal of Nonferrous Metals[J], 2017, 27: 1947-1955.
    [40] Rao P P, Agrawal B K, Rao A M. Journal of Materials Science [J], 1991, 26: 1485-1496
    [41] Zeng Yuewu (曾跃武), Li Zhizhang (李志章). The Chinese Journal of Nonferrous Metals (中国有色金属学报) [J]., 2001, (06): 1059-1063
    [42] Guo Z K, Jie J C, Liu S C, et al. Journal of Alloys and Compounds[J], 2020, 813: 152229
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王文静,冯启航,刘雪峰,涂英明.高熔点差三元合金累积叠轧-扩散合金化制备工艺[J].稀有金属材料与工程,2023,52(8):2765~2774.[WANG Wenjing, FENG Qihang, LIU Xuefeng, TU Yingming. High difference melting point of ternary alloy by accumulative roll bonding-diffusion alloying preparation process[J]. Rare Metal Materials and Engineering,2023,52(8):2765~2774.]
DOI:10.12442/j. issn.1002-185X.20220994

复制
文章指标
  • 点击次数:499
  • 下载次数: 1091
  • HTML阅读次数: 48
  • 引用次数: 0
历史
  • 收稿日期:2022-12-21
  • 最后修改日期:2023-02-21
  • 录用日期:2023-03-13
  • 在线发布日期: 2023-08-28
  • 出版日期: 2023-08-24