+高级检索
钨选区激光熔化应力场的数值模拟
作者单位:

季华实验室

基金项目:

国家自然科学基金


Numerical Simulation on Stress Field of Selective Laser Melting Tungsten
Affiliation:

Ji Hua Laboratory

Fund Project:

National Natural Science Foundation of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    建立了将随温度变化的材料参数特性和相变潜热考虑在内,用“生死单元”技术模拟铺粉过程的钨选区激光熔化热力耦合有限元模型,模拟了选区激光熔化过程中成形件的温度场和应力场,探究了不同基板预热温度和不同支撑结构对成形件残余应力的影响。模拟结果表明,金属钨在选区激光熔化过程中经历多次加热、冷却过程,温度分布不均匀。基板预热和施加支撑结构均能减小成形件的残余应力,当基板预热温度为1273.15K时,成形件中间节点残余应力减小118.99MPa,减小幅度为9.96%;当采用四层网格支撑结构时,成形件中间节点残余应力减小413.33MPa,减小幅度为34.61%。

    Abstract:

    A thermodynamic coupling finite element model of tungsten selective laser melting was established by using the ‘birth and death element’ technique to simulate the powder laying process, taking into account the material parameter characteristics and latent heat of phase transition. The temperature and stress fields of the forming parts during selective laser melting were simulated. The effects of different preheating temperatures of substrate and different support structures on the residual stress of formed parts was investigated. The simulation results show that tungsten has undergone many heating and cooling processes during selective laser melting, and the temperature distribution is not uniform. Both substrate preheating and applying support structures can reduce the residual stress of the formed part. When the preheating temperature of the substrate is 1273.15K, the residual stress of the intermediate joint of the forming part is reduced by 118.99MPa (9.96%). When the four-layer grid support structure is adopted, the residual stress of the middle joint of the forming part is reduced by 413.33MPa (34.61).

    参考文献
    参考文献? References
    [1] Deng Cheng(邓澄),Jiang Menglong(蒋梦龙),Zhou Shengfeng(周圣丰) et al. Special Casting Nonferrous Alloys[J],2022,42(7):804
    [2]Yan Dongfang (闫东方),Shi Chuanwei(史传伟),Wang Xibao(王希保) et al. Electric Welding Machine[J], 2021,51(08):93
    [3] Wan Hongyuan(万宏远),Liu Zhuangzhuang(刘壮壮),Han Quanquan(韩泉泉) et al. Aeronautical Science Technology[J], 2022,33(09):26
    [4]Wu Fang(伍方). Research on forming technology of pure tungsten material by selective laser melting[D],Shanghai:Shanghai University, 2021
    [5]Li Huishan(李会山),Yang Xichen(杨洗陈),Wang Yunshan(王云山) et al. Journal of Tiangong University[J], 2003(05):9
    [6] Bontha S, Klingbeil N W, Kobryn P A et al. Journal of Materials Processing Technology[J], 2006, 178(1-3): 135
    [7] Bontha S, Klingbeil N W, Kobryn P A et al. Materials Science and Engineering: A[J],2009, 513-514: 311
    [8]Xi Mingzhe(席明哲),Yu Gang(虞钢). Chinese Journal of Lasers[J],2004(12):1527
    [10] Shen Xianfeng(沈显峰),Yao Jin(姚进),Wang Yang(王洋) et al. Journal of Mechanical Engineering[J], 2006(08):78
    [11]Zhang Wenxian(章文献),Shi Yusheng(史玉升),Li Jiagui(李佳桂) et al. Applied Laser[J],2008(03):185
    [12]Cheng Guangping(程广萍),Li Mingxi(李明喜),He Yizhu(何宜柱) et al. Heat Treatment[J],2009,24(04):49
    [13]Du Yang(杜洋),Qiao FengBin(乔凤斌),Guo Lijie(郭立杰) et al. Electric Welding Machine[J],2018,48(08):34
    [14]Gong Cheng(龚丞),Wang Lifang(王丽芳),Zhu Gangxian(朱刚贤) et al. Laser Technology[J],2019,43(02):263
    [15]Wang Lifang(王丽芳),Sun Yaxin(孙亚新),Zhu Gangxian(朱刚贤) et al. Applied Laser[J],2019,39(03):376
    [16]Zhao Liang(赵亮),Wang Lifang(王丽芳),Zhu Gangxian(朱刚贤) et al. Applied Laser[J],2021,41(02):366
    [17]Wang L, Jiang X, Zhu Y et al. The International Journal of Advanced Manufacturing Technology[J],2018, 97(9-12): 3535
    [18]Chen Dening(陈德宁),Liu Tingting(刘婷婷),Liao Wenhe(廖文和) et al. Chinese Journal of Lasers[J],2016,43(04):74
    [19]Cheng B, Shrestha S, Chou Y K. Additive Manufacturing[J], 2016,12:240
    [20]Song J, Wu W, Zhang L et al. Optik[J],2018,170:342
    [21]Wang Wen(王稳),Zhao Zengya(赵增亚),Zhang Shengyong(张生永) et al. Laser Optoelectronics Progress[J],2020,57(05):156
    [22]Su Ronghua(苏荣华),Liu Weijun(刘伟军),Long Risheng(龙日升). Manufacturing Technology Machine Tool[J].2009(04):78
    [23]Long Risheng(龙日升),Liu Weijun(刘伟军),Xing Fei(邢飞) et al. Journal of Mechanical Engineering[J],2009,45(10):241
    [24]Bian Hongyou(卞宏友),Zhai Quanxing(翟泉星),Qu Shen(曲伸) et al. Applied Laser[J],2017,37(03):327
    [25] Mertens R, Dadbakhsh S, Van Humbeeck J et al. Procedia CIRP[J],2018,74:5
    [26]Yang Yi(杨益),Dang Mingzhu(党明珠),Li Wei(李伟) et al. Journal of Mechanical Engineering[J],2020,56(03):181
    [27]Wild N, Giedenbacher J,Huskic A et al. Procedia Computer Science[J],2022,200:1274
    [28]Liao Yinglan(廖英岚). Research on residual stress of GH4169 super-alloy fabricated by selective laser melting[D],Wuhan: Huazhong University of Science Technology, 2017
    [29]Peng Gangyong(彭刚勇). Numerical simulation on temperature field and stress field during selective laser melting of Titanium alloy[D]. Wuhan: Huazhong University of Science Technology,2018
    [30]Ma Yue(马悦). Study on numerical simulation of general expression of double ellipsoidal heat source model[D]. Tianjin: Hebei University of Technology, 2015
    [31]Luo Xinlei(罗心磊),Liu Meihong(刘美红),Li Zhenhua(黎振华) et al. Chinese Journal of Lasers[J],2021,48(14):52
    [32]Goldak J, Chakravarti A, Bibby M. Metallurgical Transactions B[J],1984, 15(2): 299
    [33]Pan Aigang(潘艾刚),Wang Junbiao(王俊彪),Zhang Xianjie(张贤杰). Computer Simulation[J],2014,31(02):315
    [34] Luo C, Qiu J, Yan Y et al. Journal of Materials Processing Technology[J],2018,261(1):74
    [35]Chen Te(陈特). Research on preparation of Cu-based memory alloy powder core wire and its arc additive manufacturing characteristics[D]. Zhenjiang: Jiangsu University,2020
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周木华,赵聪聪.钨选区激光熔化应力场的数值模拟[J].稀有金属材料与工程,2024,53(2):490~500.[zhou muhua, zhao congcong. Numerical Simulation on Stress Field of Selective Laser Melting Tungsten[J]. Rare Metal Materials and Engineering,2024,53(2):490~500.]
DOI:10.12442/j. issn.1002-185X.20230040

复制
文章指标
  • 点击次数:229
  • 下载次数: 759
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-01-28
  • 最后修改日期:2023-04-04
  • 录用日期:2023-04-07
  • 在线发布日期: 2024-02-28
  • 出版日期: 2024-02-23