+高级检索
同轴ITO-TiO2纳米管复合材料的储锂性能研究
作者:
作者单位:

昆明理工大学材料科学与工程学院

基金项目:

科技部重点专项(中国:2021YFE0104300,乌兹别克斯坦:MUK-2021-45)


Lithium storage properties of coaxial ITO-TiO2 nanotube composites
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    TiO2负极因其在锂离子电池充放电过程中具有良好的结构稳定性和安全性而受到广泛的关注。然而,TiO2固有的导电性差限制了其在高电流密度下的容量及循环稳定性。本文,通过真空机械压注法和随后的退火处理成功制备了同轴氧化铟锡-TiO2纳米管复合物(ITO-TiO2NTs)。作为锂离子电池的负极材料,在0.2 A g?1的电流密度下,ITO-TiO2NTs在350次循环后表现出295.9 mAh g?1的高容量。ITO在三维结构中充当导电电芯的角色,提高整体的导电性,促进电子和锂离子快速传输,从而提高复合材料循环稳定性和倍率性能。本文所提出的真空机械压注法对TiO2纳米管阵列薄膜材料的复合改性提供了简单、高效的方法,具有重要意义。

    Abstract:

    TiO2 anode has received wide attention because of its good structural stability and safety during the charging and discharging of lithium-ion battery. However, the inherent poor conductivity of TiO2 limits its capacity and cycling stability at high current densities. In this paper, coaxial indium tin oxide-TiO2 nanotube complexes (ITO-TiO2NTs) were successfully prepared by vacuum mechanical press injection method and subsequent annealing treatment. As an anode material for Li-ion batteries, ITO-TiO2NTs exhibited a high capacity of 295.9 mAh g-1 after 350 cycles with a current density of 0.2 A g-1. The ITO acts as a conductive core in the three-dimensional structure, which improves the overall conductivity and facilitates the fast electron and Li-ion transfer, thus improving the cycling stability and multiplicity performance of the composite. The vacuum mechanical press injection method proposed in this paper provides a simple and efficient method for composite modification of TiO2 nanotube array thin film materials, which is of great significance.

    参考文献
    [1] Tarascon J-M, Armand M. nature [J], 2001, 414 (6861): 359-367.
    [2] Goodenough J B, Kim Y. Chemistry of materials [J], 2010, 22 (3): 587-603.
    [3] Amine K, Kanno R, Tzeng Y. Mrs Bulletin [J], 2014, 39 (5): 395-401.
    [4] Yoshino A. Angewandte Chemie International Edition [J], 2012, 51 (24): 5798-5800.
    [5] Larcher D, Tarascon J-M. Nature chemistry [J], 2015, 7 (1): 19-29.
    [6] Jin Y, Zhu B, Lu Z, et al. Advanced Energy Materials [J], 2017, 7 (23): 1700715.
    [7] Su X, Wu Q, Li J, et al. Advanced Energy Materials [J], 2014, 4 (1): 1300882.
    [8] Yoshio M, Wang H, Fukuda K, et al. Journal of The Electrochemical Society [J], 2002, 149 (12): A1598.
    [9] Li W, Sun X, Yu Y. Small Methods [J], 2017, 1 (3): 1600037.
    [11] Liu M, Ma X, Gan L, et al. Journal of Materials Chemistry A [J], 2014, 2 (40): 17107-17114.
    [12] Wang G, Wang B, Wang X, et al. Journal of Materials Chemistry [J], 2009, 19 (44): 8378-8384.
    [13] Derrien G, Hassoun J, Panero S, et al. Advanced Materials [J], 2007, 19 (17): 2336-2340.
    [14] Xu Y, Liu Q, Zhu Y, et al. Nano letters [J], 2013, 13 (2): 470-474.
    [15] Su D, Dou S, Wang G. Chemistry of Materials [J], 2015, 27 (17): 6022-6029.
    [16] Xiong Y, Qian J, Cao Y, et al. ACS applied materials interfaces [J], 2016, 8 (26): 16684-16689.
    [17] Liang S, Wang X, Cheng Y-J, et al. Energy Storage Materials [J], 2022, 45: 201-264.
    [18] Yan D, Yu C, Zhang X, et al. ElectroChimica Acta [J], 2017, 254: 130-139.
    [19] Song T, Paik U. Journal of Materials Chemistry A [J], 2016, 4 (1): 14-31.
    [20] Hwang J-Y, Myung S-T, Lee J-H, et al. Nano Energy [J], 2015, 16: 218-226.
    [21] Yang H, Lan C-K, Duh J-G. Journal of Power Sources [J], 2015, 288: 401-408.
    [22] Han H, Song T, Bae J-Y, et al. Energy Environmental Science [J], 2011, 4 (11): 4532-4536.
    [23] Lee J, Chen Y-M, Zhu Y, et al. ACS applied materials interfaces [J], 2014, 6 (23): 21011-21018.
    [24] Fu W, Li Y, Chen M-S, et al. Journal of Power Sources [J], 2020, 468: 228363.
    [25] Tavakkoli N, Soltani N, Tabar Z K, et al. Chemical Papers [J], 2019, 73: 1377-1388.
    [26] Suo J, Jiao K, Fang D, et al. Vacuum [J], 2022, 204: 111338.
    [27] Xu H, Wang L, Zhong J, et al. Energy Environmental Materials [J], 2020, 3 (2): 177-185.
    [28] Jiang W, Xiong D, Wu S, et al. Ceramics International [J], 2022, 48 (18): 27174-27181.
    [29] Chen J, Zeng T, Chang S, et al. Energy Technology [J], 2022, 10 (11): 2200494.
    [30] Wachtler M, Besenhard J O, Winter M. Journal of Power Sources [J], 2001, 94 (2): 189-193.
    [31] Ho W-H, Li C-F, Liu H-C, et al. Journal of Power Sources [J], 2008, 175 (2): 897-902.
    [32] Yang R, Zheng J, Huang J, et al. Electrochemistry Communications [J], 2010, 12 (6): 784-787.
    [33] Bae S-H, Karthikeyan K, Lee Y-S, et al. Carbon [J], 2013, 64: 527-536.
    [34] Panda M R, Ghosh A, Kumar A, et al. Nano Energy [J], 2019, 64: 103951.
    [35] Paulraj V, Kavibharathy K, Kumaran V, et al. Ceramics International [J], 2022, 48 (19): 27922-27930.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈俊俊.同轴ITO-TiO2纳米管复合材料的储锂性能研究[J].稀有金属材料与工程,2024,53(5):1429~1436.[Cheng Junjun. Lithium storage properties of coaxial ITO-TiO2 nanotube composites[J]. Rare Metal Materials and Engineering,2024,53(5):1429~1436.]
DOI:10.12442/j. issn.1002-185X.20230169

复制
文章指标
  • 点击次数:306
  • 下载次数: 559
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-03-31
  • 最后修改日期:2023-04-19
  • 录用日期:2023-04-27
  • 在线发布日期: 2024-05-28
  • 出版日期: 2024-05-22