Abstract:TiO2 anode has received wide attention because of its good structural stability and safety during the charging and discharging of lithium-ion battery. However, the inherent poor conductivity of TiO2 limits its capacity and cycling stability at high current densities. In this paper, coaxial indium tin oxide-TiO2 nanotube complexes (ITO-TiO2NTs) were successfully prepared by vacuum mechanical press injection method and subsequent annealing treatment. As an anode material for Li-ion batteries, ITO-TiO2NTs exhibited a high capacity of 295.9 mAh g-1 after 350 cycles with a current density of 0.2 A g-1. The ITO acts as a conductive core in the three-dimensional structure, which improves the overall conductivity and facilitates the fast electron and Li-ion transfer, thus improving the cycling stability and multiplicity performance of the composite. The vacuum mechanical press injection method proposed in this paper provides a simple and efficient method for composite modification of TiO2 nanotube array thin film materials, which is of great significance.