+高级检索

O相对Ti2AlNb合金拉伸性能影响的分子动力学模拟

作者:
作者单位:

合肥工业大学 材料科学与工程学院

中图分类号:

TG146.23;TG113.25+3

基金项目:

国家自然科学基金 (51975175,51875158)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本研究基于分子动力学研究了Ti2AlNb合金中不同数密度的O相对基体B2相力学性能的影响。结果表明:B2相中含有O相时材料的屈服强度和塑性均得到了提升。这是因为在拉伸变形过程中析出相阻碍了基体中滑移系的开动,从而提高了基体B2相的塑性变形抗力。研究发现材料塑性的提升主要与内应力的释放有关,其中B2相通过马氏体相变释放内应力占主导作用,位错释放内应力为次要作用。当基体B2相中含有O相时,O相对位错阻碍作用会导致应力集中,从而诱导大量BCC结构发生马氏体相变,在此过程中应力集中的程度降低,延缓了孔洞形核长大;另一方面由于O相为韧性相,因此孔洞在O相和B2相边界生长受到抑制,从而使Ti2AlNb合金的塑性和韧性大大提高。并且随着析出相数密度的增加,材料的屈服强度和屈服应变下降,但其强度和塑性相比不含O相时仍有提升。这是因为随着O相数密度的增加,导致变形过程中基体原子发生马氏体相变的比例降低,因此相变对应力集中的释放程度降低,孔洞的产生与扩大速度提高,从而使材料更容易发生断裂失效。

    Abstract:

    In this study, the effect of different number densities of O-phase on the mechanical properties of the matrix B2 phase in Ti2AlNb alloy was investigated based on molecular dynamics. The results show that the yield strength and plasticity of the B2 phase are improved when the O phase is contained. This is because the precipitated phase hinders the start of the slip system in the matrix during the tensile deformation process, thereby improving the plastic deformation resistance of the B2 phase of the matrix. It is found that the improvement of material plasticity is mainly related to the release of internal stress, in which the release of internal stress by the B2 phase through martensitic phase transition is dominant, and the release of internal stress by dislocation is secondary. When the matrix B2 phase contains the O phase, the O relative dislocation hindrance will lead to stress concentration, thereby inducing martensitic phase transition of a large number of BCC structures, and the degree of stress concentration in this process decreases, delaying the growth of pore nuclei. On the other hand, since the O phase is a ductile phase, the growth of holes at the boundary between the O phase and the B2 phase is inhibited, so that the plasticity and toughness of Ti2AlNb alloy are greatly improved. And with the increase of the density of the number of precipitated phases, the yield strength and yield strain of the material decrease, but its strength and plasticity are still improved compared with those without the O phase. This is because, with the increase of O phase number density, the proportion of martensitic phase transition of the matrix atoms during the deformation process decreases, so the release degree of the stress concentration by the phase transition decreases, and the generation and expansion rate of the holes increases, so that the material is more prone to fracture failure.

    参考文献
    [1] Froes F H, Suryanarayana C, Eliezer D. Journal of Materials Science[J], 1992, 27(19): 5113
    [2] Boehlert C J, Majumdar B S. Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science[J], 1999(9): 30A
    [3] Xue Kemin(薛克敏), Hu Yong(胡勇), Shi Yingbin(时迎宾) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2019, 48(08): 2556
    [4] Banerjee D, Gogia A K, Nandi T K et al. Acta Metallurgica[J], 1988, 36(4): 871
    [5] Cowen C J, Boehlert C J. Intermetallics[J], 2015, 14(4): 412
    [6] Li Ping(李萍), Huang Xiaoyu(黄晓雨), Liu Le(刘乐) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2023, 52(02): 685
    [7] PARTRIDGE A,SHELTON E F J. Air and Space Europe[J], 2001, 3(3): 170
    [8] Gholami M, Vesely J, Altenberger I et al. Materials Science and Engineering A [J], 2016, 676(676): 156-164
    [9] Zhao Y, Liu J, Topping T D et al. Journal of Alloys and Compounds[J], 2021, 851: 156931
    [11] Pogorelko V V, Mayer A E. Materials Science and Engineering A[J], 2015, 642(aug.26): 351
    [12] Cho J, Sun C T. Computational Materials Science[J], 2007, 41(1): 54
    [13] Dewapriya M A N, Meguid S A, Rajapakse R K N D. Engineering Fracture Mechanics [J], 2018, 195: 92
    [14] Zhu Xu(朱旭), Jiang Wugui(江五贵), Li Yuancai(李源才) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2021, 50(04): 1254
    [15] Cui Y, Chen Z. Modelling and Simulation in Materials Science and Engineering[J], 2016, 25(2):025007
    [16] Krasnikov V S, Mayer A E, Pogorelko V V. International Journal of Plasticity[J], 2020, 128: 102672
    [17] Rajput A, Paul S K. Journal of Alloys and Compounds[J], 2021, 869: 159213
    [18] You L J, Hu L J, Xie Y P et al. Computational Materials Science[J], 2016, 118: 236
    [19] Pogorelko V V, Mayer A E. Materials Science and Engineering A[J], 2015, 642(aug.26): 351
    [20] Li P, Wang L, Wang B et al. Vacuum[J], 2022, 195: 110637.
    [21] Xue K, Zhang Y, Meng M et al. Engineering Fracture Mechanics[J], 2023, 279: 109050
    [22] Plimpton S. Journal of Computational Physics[J], 1995, 117(1): 1
    [23] Xu S, Guo Y F, Ngan A. International Journal of Plasticity[J], 2013, 43: 116
    [24] Stukowski A. Modelling and Simulation in Materials Science and Engineering [J], 2010, 18(1): 2154
    [25] Ludwig M, Farkas D, Pedraza D et al. Modelling and Simulation in Materials Science and Engineering[J], 1998, 6(1): 19
    [26] Cao A J, Wei Y G. Journal of Applied Physics[J], 2007, 102(8): 422
    [27] Jelinek B, Groh S, Horstemeyer M et al. Physical Review B [J], 2012, 85(24): 245102
    [28] Amodeo J, Begau C, Bitzek E. Materials Research Letters[J], 2014, 2(3): 140
    [29] Singh D, Sharma P, Jindal S et al. Current Applied Physics[J], 2019, 19(1): 37
    [30] Farkas D, Jones C. Modelling and Simulation in Materials Science and Engineering[J], 1999, 4(1): 23
    [31] Rawat S, Mitra N. Computational Materials Science[J], 2020, 172(3): 109325
    [32] Paul S K, Kumar S, Tarafder S. Engineering Fracture Mechanics[J], 2017, 176: 257
    [33] Rajput A, Paul S K. Metals and Materials International[J], 2021, 27: 825
    [34] Zhang Bin(张 斌), Zhang Xiaoyong(张晓泳), Li Chao(李 超) et al. Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2012, 41(6): 1010
    [35] Pinsook U, Ackland G J. Phys Rev B[J], 1998, 58(17): 11 252
    [36] Dieter G E. Journal of the Franklin Institute[J], 1962, 273(4): 338
    [37] Zhang Y, Jiang S. Philosophical Magazine[J], 2017, 97(30): 1
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李萍,丁瑞东,张勇强,石成峰,郅强,薛克敏.

O相对Ti2AlNb合金拉伸性能影响的分子动力学模拟[J].稀有金属材料与工程,2024,53(6):1701~1708.[Li Ping, Ding Ruidong, Zhang Yongqiang, Shi Chengfeng, Zhi Qiang, Xue Kemin. Molecular dynamics simulation of the effect of tensile properties of Ti2AlNb alloy[J]. Rare Metal Materials and Engineering,2024,53(6):1701~1708.]
DOI:10.12442/j. issn.1002-185X.20230224

复制
文章指标
  • 点击次数:221
  • 下载次数: 460
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-04-19
  • 最后修改日期:2023-05-25
  • 录用日期:2023-06-01
  • 在线发布日期: 2024-06-24
  • 出版日期: 2024-06-17