+高级检索
预热处理对一种新型镍基粉末高温合金涡轮盘锻态显微组织的影响
作者:
作者单位:

1.中南大学 粉末冶金国家重点实验室;2.深圳市万泽中南研究院有限公司

基金项目:

广东省引进创新创业团队项目资助 607264877417,国家科技重大专项( 2017-Ⅵ-0009-0080 ),深圳市工业和信息化局项目(201806071114243770)


Miscrostructure study of preheating treatment on a Novel Nickel-Based Superalloy turbine disc
Fund Project:

Supported by Guangdong Innovative and Entrepreneurial Research Team Program 607264877417,National Science and Technology Major Project(2017-Ⅵ-0009-0080),Industry and Information Technology Bureau of Shenzhen Municipality (Project No. 201806071114243770)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本工作研究了复合亚固溶热处理工艺对一种新型镍基粉末高温合金FGH4113A(WZ-A3)γ"相组织的影响规律。大尺寸锻造态涡轮盘件锻后冷速较低,γ"相的尺寸在约100nm至4500nm之间分布。在盘件上取小试样进行热处理实验,试样升温至1000℃和1050℃时,γ"相总占比下降,Oswald熟化机制及PAM机制同时存在。试样升温至1100℃时,晶内γ"相完全回溶。使用复合亚固溶热处理工艺,先将试样升温至1120℃度保温2h,快速冷却后再分别升温至1000℃、1050℃和1100℃时,γ"相总占比均下降,晶内γ"相演变以Oswald熟化机制为主导,其形貌及尺寸在升温过程中相对稳定。在盘件上取性能试棒分别进行锻造态+1000℃(不保温)+时效热处理和锻造态+1120℃(2h),80℃/min+1000℃空冷+时效热处理后进行550℃拉伸测试,后者的屈服强度和抗拉强度显著高于前者,可为大尺寸涡轮盘件的双性能热处理工艺的制定提供参考。

    Abstract:

    The effect of two-step sub-solvus heat treatment process on the γ "phase microstructure of a novel nickel-based powder metallurgy superalloy FGH4113A (WZ-A3) was studied. The cooling rate of large-size forged turbine disc is lower after forging, and the size distribution of γ" phases is from about 100nm to 4500nm. Small samples were taken from the disc for heat treatment experiments. When the samples were heated to 1000 ℃ and 1050 ℃, the total proportion of γ "phases decreased, and the evolution mechanism showed signs of Oswald coarsening mechanism and PAM mechanism. When the sample was heated to 1100 ℃, the intracrystalline γ" phase was completely dissolved. If two-step sub-solid solution heat treatment process was used, the sample was first heated to 1120 ℃ for 2h followed by rapid cooling, and then heated to 1000 ℃, 1050 ℃ or 1100 ℃, the total proportion of γ "phases decreased. The evolution of intracrystalline γ" phases was dominated by the Oswald coarsening mechanism, and its morphology and size were relatively stable during the heating process. The testing rods were cut from the disc and went through as forged state + 1000 ℃ (without heat preservation) + aging heat treatment and as forged state + 1120 ℃ (2h) + aging heat treatment respectively, and followed by tensile test at 550 ℃. The yield and tensile strengths of the latter one are significantly higher than the first one, and this can be treated as a reference for dual-performance heat treatment process design of large-size turbine discs.

    参考文献
    [1] REED R C. The Superalloys Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006.
    [2] KOZAR R W, SUZUKI A, MILLIGAN W W, et al. Strengthening Mechanisms in Polycrystalline Multimodal Nickel-Base Superalloys [J]. Metallurgical & Materials Transactions A, 2009, 40(7): 1588-603.
    [3] GALINDO-NAVA E I, CONNOR L D, RAE C. On the prediction of the yield stress of unimodal and multimodal γ'' Nickel-base superalloys [J]. Acta Materialia, 2015, 98: 377-90.
    [4] COLLINS D M, STONE H J. A modelling approach to yield strength optimisation in a nickel-base superalloy [J]. International Journal of Plasticity, 2014, 54: 96-112.
    [5] GOODFELLOW A J, GALINDO-NAVA E I, CHRISTOFIDOU K A, et al. Gamma Prime Precipitate Evolution During Aging of a Model Nickel-Based Superalloy [J]. Metallurgical & Materials Transactions A, 2017, 49A: 718-28.
    [6] GOODFELLOW, A J. Strengthening mechanisms in polycrystalline nickel-based superalloys [J]. Materials Science and Technology, 2018, 34(15): 1793-808.
    [7] GOODFELLOW A J, GALINDO-NAVA E I, SCHWALBE C, et al. The role of composition on the extent of individual strengthening mechanisms in polycrystalline Ni-based superalloys [J]. Materials & design, 2019, 173: 107760.
    [8] NING Y, YAO Z, FU M W, et al. Recrystallization of the hot isostatic pressed nickel-base superalloy FGH4096: I. Microstructure and mechanism [J]. Materials Science and Engineering A, 2011, 528(28): 8065-70.
    [9] NING Y, FU M W, YAO W. Recrystallization of the hot isostatic pressed nickel-base superalloy FGH4096. II: Characterization and application [J]. Materials Science and Engineering A, 2015, 539: 101–6.
    [11] PAYTON E, WANG G, MA N, et al. Integration of Simulations and Experiments for Modeling Superalloy Grain Growth [Z]. Superalloys 2008. Pennsylvania; The Minerals, Metals & Materials Society. 2008: 975-84
    [12] TIAN G, JIA C, LIU J, et al. Experimental and simulation on the grain growth of P/M nickel-base superalloy during the heat treatment process [J]. Materials and Design, 2009, 30: 433-9.
    [13] 程俊义, 熊江英, 刘朝峰, et al. 一种新型第三代镍基粉末高温合金亚固溶热处理调控γ''相分布的研究 [J]. 稀有金属材料与工程, 2023, 52(2): 700-9.
    [14] RICKS R A, PORTER A J, ECOB R C. The growth of γ'' precipitates in nickel-base superalloys [J]. Acta Materialia, 1983, 31: 43-53.
    [15] 程俊义, 朱立华, 马向东, et al. 一种新型镍基粉末高温合金的过固溶热处理研究 [J]. 稀有金属材料与工程, 2022, 51(10): 1-10.
    [16] BABU S S, MILLER M K, VITEK J M, et al. Characterization of the microstructure evolution in a nickel base superalloy during continuous cooling conditions [J]. Acta Materialia, 2001, 49(20): 4149-60.
    [17] SAROSI P M, WANG B, SIMMONS J P, et al. Formation of multimodal size distributions of γ′ in a nickel-base superalloy during interrupted continuous cooling [J]. Scripta Materialia, 2007, 57(8): 767-70.
    [18] WEN Y H, SIMMONS J P, SHEN C, et al. Phase-field modeling of bimodal particle size distributions during continuous cooling [J]. Acta Materialia, 2003, 51(4): 1123-32.
    [19] WEN Y H, WANG B, SIMMONS J P, et al. A phase-field model for heat treatment applications in Ni-based alloys [J]. Acta Materialia, 2006, 54(8): 2087-99.
    [20] SINGH A R P, NAG S, HWANG J Y, et al. Influence of cooling rate on the development of multiple generations of γ′ precipitates in a commercial nickel base superalloy [J]. Materials Characterization, 2011, 62: 878-86.
    [21] SINGH A R P, NAG S, CHATTOPADHYAY S, et al. Mechanisms related to different generations of γ precipitation during continuous cooling of a nickel base superalloy [J]. Acta Materialia, 2013, 61: 280-93.
    [22] KLEPSER C A. Effect of continuous cooling rate on the precipitation of gamma prime in nickel-based superalloys [J]. Scripta Metallurgica Et Materialia, 1995.
    [23] FAN X, GUO Z, WANG X, et al. Morphology evolution of γ′ precipitates in a powder metallurgy Ni-base superalloy [J]. Materials Characterization, 2018, 139: 382-9.
    [24] BOETTINGER W J, KATTNER U R, MOON K W, et al. DTA AND HEAT-FLUX DSC MEASUREMENTS OF ALLOY MELTING AND FREEZING [M]//ZHAO J-C. Methods for Phase Diagram Determination. USA; Elsevier Science. 2007: 151-221.
    [25] ROY I, BALIKCI E, IBEKWE S, et al. precipitate growth activation energy requirements in the duplex size γ'' distribution in the superalloy IN738LC [J]. Journal of materials science, 2005, 40: 6207-15.
    [26] MASOUMI F, SHAHRIARI D, JAHAZI M, et al. Kinetics and Mechanisms of γ′ Reprecipitation in a Ni-based Superalloy [J]. Scientific Reports, 2016, 6: 28650.
    [27] LIFSHITZ I M, SLYOZOV V. The kinetics of precipitation from supersaturated solid solutions [J]. Journal of Physics & Chemistry of Solids, 1961, 19(1): 35-50.
    [28] WAGNER C. Theorie der Alterung von Niederschl?gen durch Uml?sen (Ostwald‐Reifung) [J]. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie, 1961, 65(7‐8).
    [29] THOMAS G. Strengthening Methods in Crystals [M]. Amsterdam: Elsevier 1971.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘朝峰,程俊义,马向东,肖磊,郭建政,冯干江.预热处理对一种新型镍基粉末高温合金涡轮盘锻态显微组织的影响[J].稀有金属材料与工程,2024,53(3):768~777.[liuzhaofeng, chengjunyi, maxiangdong, xiaolei, guojianzheng, fengganjiang. Miscrostructure study of preheating treatment on a Novel Nickel-Based Superalloy turbine disc[J]. Rare Metal Materials and Engineering,2024,53(3):768~777.]
DOI:10.12442/j. issn.1002-185X.20230519

复制
文章指标
  • 点击次数:198
  • 下载次数: 625
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-08-22
  • 最后修改日期:2023-11-13
  • 录用日期:2023-11-17
  • 在线发布日期: 2024-03-27
  • 出版日期: 2024-03-20