+高级检索
负泊松比型镍钛合金血管支架结构设计及其在血管中的支撑性能研究*
作者:
作者单位:

1.重庆邮电大学先进制造工程学院;2.西安交通大学机械结构强度与振动国家重点实验室

中图分类号:

TG156

基金项目:

国家自然科学基金重点资助项目,国家自然科学基金项目(面上项目,重点项目,重大项目)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    通过用户自定义NiTi合金子程序对负泊松比结构的凹凸型自扩张支架进行有限元模拟分析,通过控制变量法研究了不同几何参数条件下,支架在自膨胀过程中状态和应力演化情况。结果表明:随着周向支撑单元数量Nc和支撑圈倾斜杆与水平方向的夹角θ改变,凹凸型支架与之对应的支撑性能出现完全相反的变化。支架轴向距离在向四周扩张过程中变化的大小主要与参数h/l和θ呈负相关。凹凸型支架处于病变股动脉时的扩张率可以达到90.3%,高于现有自膨胀医疗支架。本凹凸型支架在股动脉中工作时可以实现均匀的扩张,直接避免了中间狭小而两端宽的情况出现。进行了Goodman疲劳曲线和疲劳因子评估,符合国家对医用支架的服役寿命要求。

    Abstract:

    The state of stress concentration in a concave-convex self-expanding bracket with a structure that has a negative Poisson ratio was studied using NiTi UMAT program. It has been found that the support performance of the concave and convex bracket changes completely with the variation in the number of units (Nc) and the angle (θ) between the inclined bar and the horizontal direction of the support ring. The change in the axial distance of the support is primarily influenced by the parameters h/l and θ, and it exhibits a negative correlation. The dilation rate of a concave-convex stent in a diseased femoral artery can reach 90.3%, which is generally higher than that of existing self-dilation medical stents. The concave-convex stent can achieve uniform expansion when working in the femoral artery, thereby avoiding the issue of a narrow middle and wide ends. The Goodman fatigue curve and fatigue factor were evaluated, meeting the national requirements for medical stents.

    参考文献
    [1] SANG Shaowei(桑少伟), CHU Chong(冲楚), ZHANG Tongchao(张同超), et al. Ecotoxicology and Environmental Safety[J], 2022, 238: 113588
    [2] LEI Long(龙磊), QI Xiaozhi(齐晓志), LI Shibo(李世波), et al. Computers in Biology and Medicine[J], 2019, 104: 205-214
    [3] LUO Chen(陈罗), HAN Chuanzhen(韩川震), Zhang Xiangyu(张翔宇), et al. Thin-Walled Structures[J], 2021, 163
    [4] JIANG Wei(蒋伟), REN Xin(任鑫), WANG Shilong(王石龙), et al. Composites Part B: Engineering[J], 2022, 235: 109733
    [5] WANG Yunche, SHEN Mengwei, LIAO Simin. Physica Status Solidi B-Basic Solid State Physics[J], 2017, 254(12)
    [6] REN XIN(任鑫), ZHANG Xiangyu(张相玉), XIE Yimin(谢亿民). Chinese Journal of Theoretical and Applied Mechanics(力学学报)[J],2019, 51(03): 656-687
    [7] KURIBAYASHI K, TSUCHIYA K, ZHONG Y, et al. Materials Science and Engineering: A[J], 2006, 419(1-2): 131-137
    [8] DOLLA W J S, FRICKE B A, BECKER B R. Journal of Medical Devices[J], 2007, 1(1): 47-55
    [9] SCARPA F, SMITH C W, RUZZENE M, et al. physica status solidi (b)[J], 2008, 245(3): 584-590
    [11] CARNEIRO V H, PUGA H. Ciência Tecnologia dos Materiais[J], 2016, 28(1): 14-18
    [12] WU Zichao(武子超). Jilin University(吉林大学)[D]. Jilin University, 2018
    [13] BEN J M, SMAOUI H, Smart Materials and Structures[J], 2008, 17(4)
    [14] CHEN Xiang(陈翔), CHEN Wei(陈伟), LU Sheng(禄盛), et al. Journal of Mechanical Engineering(机械工程学报)[J], 2020, 56(04): 65-75
    [15] HU Zhangdi(胡章頔). Xi'an University of Technology(西安理工大学)[D], 2018
    [16] JAYENDIRAN R, NOUR B, RUIMI A. Int J Cardiol[J], 2020, 304: 164-171
    [17] AZAOUZI M, MAKRADI A, BELOURTTAR S. Materials Design[J], 2012, 41: 410-420
    [18] DORDONI E, MEOLI A, WU W, et al. Medical Engineering Physics[J], 2014, 36(7): 842-849
    [19] CUNNANE E M, MULVIHILL J J E, BARRETT H E, et al. Biomedical Engineering Online[J], 2015, 14: 12
    [20] LI Zhiguo(李治国), YAN Wengang(闫文刚), FENG Haiquan(冯海全). Journal of Biomedical Engineering(生物医学工程学杂志)[J], 2020, 37(02): 334-339
    [21] MEOLI A, DORDONI E, PETRINI L, et al. Journal of Materials Engineering and Performance[J], 2014, 23(7): 2606-2613
    [22] 杨练, . 镍钛合金支架疲劳性能的研究进展[J]. 硬质合金, 2021, 38(06): 454-459YANG Lian(杨练), DUAN Huanling(段焕玲). cemented carbide(硬质合金)[J], 2021, 38(06): 454-459
    [23] PELTON A R. Journal of Materials Engineering and Performance[J], 2011, 20(4-5): 613-6
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈 翔,刘 磊,付福康,禄 盛,赵 洋,康 熙.负泊松比型镍钛合金血管支架结构设计及其在血管中的支撑性能研究*[J].稀有金属材料与工程,2024,53(11):3136~3148.[chen xiang, liu lei, fu fukang, lu sheng, zhao yang, kang xi. Structural Design of Negative Poisson[J]. Rare Metal Materials and Engineering,2024,53(11):3136~3148.]
DOI:10.12442/j. issn.1002-185X.20230542

复制
文章指标
  • 点击次数:227
  • 下载次数: 264
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-08-31
  • 最后修改日期:2024-01-29
  • 录用日期:2024-02-28
  • 在线发布日期: 2024-11-20
  • 出版日期: 2024-11-08