+高级检索
基于非激光参数调整的表面冲击工艺研究进展
作者:
作者单位:

1.山东大学;2.中国航发北京航空材料研究院;3.中国科学院金属研究所;4.广东工业大学

基金项目:

国家重点研发计划(2023YFE0106500)、国家自然科学基金(52171073)


RESEARCH PROGRESS ON THE METHODS OF SHOCK TREATMENT BASED ON THE ADJUSTMENT OF NON-LASER PARAMETERS
Author:
Affiliation:

1.National Key Laboratory of High-end Metal Forming Equipment and Advanced Technology School of Material Science and Engineering,Shandong University,Jinan;2.Shichangxu Advanced Materials Innovation Center,Institute of Metal Research,Chinese Academy of Sciences,Shenyang

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [64]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    材料疲劳延寿以及复杂形状零部件加工等工业需求不断提高,对激光冲击过程中的具体工艺方法进行合理改进和优化已尤为迫切。本文针对激光冲击处理在航空制造等重大工业应用领域所面临的具体需求,综述了最新发展的若干工艺改进方法。所涉及工艺优化策略摆脱激光冲击对高性能激光器的设备依赖,从非激光参数调整的角度实现更具经济性和可行性的表面防护与加工的应用目标。所指非激光参数包括吸收层、约束层以及激光与材料离焦状态等可调节指标,该类指标工艺设定区间广泛且易控,并体现出良好的异形构件适应性。

    Abstract:

    With the further improvement of material fatigue life extension and processing of parts with complex shapes, laser shock processing has encountered more and more obstacles in practical applications and it is particularly urgent to improve and optimize the specific processing methods in laser shock treatments. Using the stress effect produced by pulsed lasers to process materials in various fields still has broad prospects. Given the specific needs of laser shock in different industrial applications, several processing improvement methods which get rid of the equipment dependence on high-performance laser units were proposed. The non-laser parameters referred to include adjustable indicators such as the absorption layer, constraint layer, and defocusing state between laser and material. The selected material, thickness, and other related attributes of the absorption layer and the constraint layer directly affect the intensity of laser-induced shock waves, while changes in defocusing amount lead to differences in physical or chemical effects on the material surface. The process setting range for the above non-laser indicators is wide and easy to control, and reflects good adaptability of irregular components. The development of new technologies for equal (unequal)-strength and high-strength surface strengthening based on changes in these indicators, as well as new green packaging technologies such as laser marking, are introduced in detail. The new ideas behind these new methods are expected to inspire researchers to further explore the application potential of green lasers.

    参考文献
    [1] Reed R C. The superalloys: Fundamentals and Applications [M]. New York, USA: Cambridge university press, 2006
    [2] Hu D Y, Wang R Q. Combined fatigue experiments on full scale turbine components. Aircraft Engineering and Aerospace Technology[J], 2013. 85(1): 4-9
    [3] Han G, Chen Y S, Wang X D. Flutter analysis of bending–torsion coupling of aero-engine compressor blade with assembled clearance. Applied Mathematical Modelling[J], 2015. 39(9): 2539-2553
    [4] White R M. Elastic wave generation by electron bombardment or electromagnetic wave absorption. Journal of Applied Physics[J], 1963. 34(7): 2123-2124
    [5] Askar''yan G, Moroz E. Pressure on evaporation of matter in a radiation beam. Journal of Experimental and Theoretical Physics[J], 1963. 16: 1638
    [6] Fairand B P, Clauer A H. Laser generation of high-amplitude stress waves in materials. Journal of Applied Physics[J], 1979. 50(3): 1497-1502
    [7] Mallozzi P, Fairand B. Altering material properties [P]. USA. US3850698A, 1974
    [8] Clauer A H. Laser shock peening, the path to production. Metals[J], 2019. 9(6): 626
    [9] Clauer A H, Walters C T, Ford S C. Lasers in materials processing [M]. Ohio, USA: American Society for Metals, 1983
    [11] Peyre P, Fabbro R. Laser shock processing: A review of the physics and applications. Optical and Quantum Electronics[J], 1995. 27(12): 1213-1229
    [12] Peyre P, Fabbro R, Berthe L, et al. Laser shock processing of materials, physical processes involved and examples of applications. Journal of Laser Applications[J], 1996. 8(3): 135-141
    [13] Peyre P, Fabbro R, Merrien P, et al. Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour. Materials Science and Engineering: A[J], 1996. 210(1-2): 102-113
    [14] Bartsch T M. High cycle fatigue (HCF) science and technology program [R]. UNIVERSAL TECHNOLOGY CORP DAYTON OH: 2002
    [15] Davis B, Mannava S, Rockstroh T, et al. Performance of Gen IV LSP for thick section airfoil damage tolerance [C]. 45th Aiaa/asme/asce/ahs/asc Structures, Structural Dynamics Materials Conference, 2004. 50-53
    [16] Lumley R. Fundamentals of aluminium metallurgy-Production, processing and applications [M]. Oxford, UK: Woodhead Publishing, 2011
    [17] Okazaki Y, Ito A, Sano Y, et al. Underwater laser fabrication method and device [P]. Japan. JP 8-206869/A/, 1996
    [18] Sano Y, Mukai N, Okazaki K, et al. Residual stress improvement in metal surface by underwater laser irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms[J], 1997. 121(1-4): 432-436
    [19] Ocana J L, Molpeceres-Criado J L, Gamez M, et al. Numerical simulation and experimental diagnosis of the laser-plasma interaction in high-intensity processing applications [C]. 9th International Symposium on Gas Flow and Chemical Lasers, 1993. 1810: 566-572
    [20] Ocana J L, Molpeceres C, Morales M, et al. Model for the coupled predictive assessment of plasma expansion and material compression in laser shock processing applications [C]. High-power laser ablation II, 2000. 3885: 252-264
    [21] 邹世坤, 谭永生, 郭大浩等. 激光冲击处理对铝锂合金力学性能的影响. 中国激光[J], 2004. 31(3): 371-373
    [22] 邹世坤, 巩水利, 郭恩明等. 发动机整体叶盘的激光冲击强化技术. 中国激光[J], 2011. 38(6): 76-82
    [23] Cao Z W, Che Z G, Zou S K. Simulation study of stress hole on laser shock peening with square spot. Rare Metal Materials and Engineering[J], 2013. 42: 222-225
    [24] Hu Y X, Yao Z Q. Numerical simulation and experimentation of overlapping laser shock processing with symmetry cell. International Journal of Machine Tools and Manufacture[J], 2008. 48(2): 152-162
    [25] Hu Y X, Xu X X, Yao Z Q, et al. Laser peen forming induced two way bending of thin sheet metals and its mechanisms. Journal of Applied Physics[J], 2010. 108(7): 073117
    [26] Hu Y X, Li Z, Yu X C, et al. Effect of elastic prestress on the laser peen forming of aluminum alloy 2024-T351: Experiments and eigenstrain-based modeling. Journal of Materials Processing Technology[J], 2015. 221(0): 214-224
    [27] Yang R Y, Hu Y X, Luo M S, et al. Distortion control of thin sections by single-sided laser peening. Optics and Lasers in Engineering[J], 2019. 115: 90-99
    [28] 周磊, 李应红, 汪诚等. 激光冲击强化渗铝法提高K417合金疲劳性能. 稀有金属材料与工程[J], 2011. 40(6): 1093-1096
    [29] 乔红超, 赵吉宾, 陆莹. 纳秒脉宽Nd: YAG激光冲击强化激光器的研制及分析. 中国激光[J], 2013. 40(8): 1-7
    [30] 乔红超, 高宇, 赵吉宾等. 激光冲击强化技术的研究进展. 中国有色金属学报[J], 2015. (7): 1744-1755
    [31] 卢国鑫, 金涛, 周亦胄等. 激光冲击强化在高温合金材料应用上的研究进展. 中国有色金属学报[J], 2018. 28(9): 1755-1764
    [32] Fabbro R, Peyre P, Berthe L, et al. Physics and applications of laser-shock processing. Journal of Laser Applications[J], 1998. 10(6): 265-279
    [33] 卢国鑫. 激光冲击对高温合金表面形貌、组织与性能的影响 [D]. 北京: 中国科学院大学, 2017
    [34] Lu G X, Liu J D, Qiao H C, et al. The local microscale reverse deformation of metallic material under laser shock. Advanced Engineering Materials[J], 2016. 19(2): 1600672
    [35] 彭薇薇, 凌祥. 激光冲击残余应力场的有限元分析. 航空材料学报[J], 2006. 26(6): 30-37
    [36] 侯丽华. 激光冲击对Ti-6Al-4V钛合金中高温力学性能及微观组织的影响研究 [D]. 江苏 镇江: 江苏大学, 2015
    [37] 任旭东. 金属板料的激光冲击能量吸收涂层技术研究 [D]. 江苏 镇江: 江苏大学, 2006
    [38] 任旭东, 张永康, 周建忠等. 激光冲击加工表面涂层厚度的优选. 金属热处理[J], 2006. 31(7): 61-64
    [39] Qiao H C, Sun B Y, Zhao J B, et al. Numerical modeling of residual stress field for linear polarized laser oblique shock peening. Optik[J], 2019. 186: 52-62
    [40] Chen H Q, Wang Y, Kysar J W, et al. Study of anisotropic character induced by microscale laser shock peening on a single crystal aluminum. Journal of Applied Physics[J], 2007. 101(2): 024904
    [41] 曹宇鹏, 周东呈, 冯爱新等. 激光冲击 7050 铝合金薄板试样形成残余应力洞的机制. 中国激光[J], 2016. 43(11): 1102003
    [42] Hu Y X, Yao Z Q. FEM simulation of residual stresses induced by laser shock with overlapping laser spots. Acta Metallurgica Sinica (English Letters)[J], 2008. 21(2): 125-132
    [43] Lu G X, Li J, Ji Z, et al. How does the pulsed laser turn into ‘force’?. Measurement[J], 2021. 185: 110016
    [44] Kalainathan S, Sathyajith S, Swaroop S. Effect of laser shot peening without coating on the surface properties and corrosion behavior of 316L steel. Optics and Lasers in Engineering[J], 2012. 50(12): 1740-1745
    [45] Nakano H, Tsuyama M, Miyauti S, et al. Femtosecond and nanosecond laser peening of stainless steel. Journal of Laser Micro Nanoengineering[J], 2010. 5(2): 175-178
    [46] Nguyen T T P, Tanabe R, Ito Y. Laser-induced shock process in under-liquid regime studied by time-resolved photoelasticity imaging technique. Applied Physics Letters[J], 2013. 102(12): 775
    [47] Sano Y. Quarter century development of laser peening without coating. Metals[J], 2020. 10(1): 152
    [48] Lam J, Amans D, Chaput F, et al. γ-Al2O3 nanoparticles synthesised by pulsed laser ablation in liquids: a plasma analysis. Physical Chemistry Chemical Physics[J], 2014. 16(3): 963-973
    [49] Barney C W, Dougan C E, McLeod K R, et al. Cavitation in soft matter. Proceedings of the National Academy of Sciences[J], 2020. 117(17): 9157-9165
    [50] Sakka T, Masai S, Fukami K, et al. Spectral profile of atomic emission lines and effects of pulse duration on laser ablation in liquid. Spectrochimica Acta Part B: Atomic Spectroscopy[J], 2009. 64(10): 981-985
    [51] Lu G X, Wang D G, Gao S, et al. Will the laser shock-induced residual stress hole inevitably occur?. Journal of Materials Research and Technology[J], 2022. 18: 3626-3630
    [52] 卢国鑫. 一种基于激光冲击波的均匀表面强化方法 [P]. 中国. ZL202010014492.5, 2021
    [53] Ling X, Peng W W, Ma G. Influence of laser peening parameters on residual stress field of 304 stainless steel. Journal of Pressure Vessel Technology[J], 2008. 130(2): 021201
    [54] Lu G X, Li J, Zhang Y K, et al. Effect of initial surface roughness on the actual intensity of laser shock processing. Surface Topography: Metrology and Properties[J], 2019. 7: 015025
    [55] 卢国鑫, 王佃刚, 郑超, et al. 一种基于变液体约束层物性的双物理效应脉冲激光冲击方法 [P]. 中国. ZL202110320522.X, 2022
    [56] 卢国鑫, 王佃刚, 宿庆财, et al. 一种基于液体约束层特征调整的激光冲击 空化 效应控制方法及其应用 [P]. 中国. ZL202110206119.4, 2022
    [57] 卢国鑫, 张永康, 杨青天. 一种脉冲激光强化金属零件的方法及系统 [P]. 中国. ZL201711217299.6, 2019
    [58] Lu G X, Liu J D, Zhou Y Z, et al. Differences in microscale surface contours of metallic targets subjected to laser shock. Optics Communications[J], 2019. (436): 188-191
    [59] 张永康, 卢国鑫, 林超辉, et al. 一种激光冲击强化方法及装置 [P]. 中国. ZL201810663972.7, 2019
    [60] Lu G X, Li J, Zhang Y K, et al. A metal marking method based on laser shock processing. Materials and Manufacturing Processes[J]. 2019. 34(6): 598-603
    [61] 卢国鑫. 一种基于变化离焦量的不等强度激光冲击加工方法 [P]. 中国. ZL202110918764.9, 2022
    [62] 卢国鑫, 高荣, 王欣, et al. 一种载荷传递式不等强度激光冲击方法 [P]. 中国. ZL202011548746.8, 2021
    [63] Lu G X, Trdan U, Zhang Y K, et al. The distribution regularity of residual stress on a metal surface after laser shock marking. Mechanics of Materials[J], 2020. 143: 103310
    [64] Gao H, Hu Y W, Xuan Y, et al. Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures. Science[J], 2014. 346(6215): 1352-1356
    [65] 卢国鑫, 张永康, 刘俊. 一种激光冲击压印方法及装置 [P]. 中国. ZL201810663962.3, 2020
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

卢国鑫,罗学昆,王强,刘纪德,王欣,张永康,李金国,陆峰.基于非激光参数调整的表面冲击工艺研究进展[J].稀有金属材料与工程,2024,53(11):3246~3258.[LU Guoxin, LUO Xuekun, WANG Qiang, LIU Jide, WANG Xin, ZHANG Yongkang, LI Jinguo, LU Feng. RESEARCH PROGRESS ON THE METHODS OF SHOCK TREATMENT BASED ON THE ADJUSTMENT OF NON-LASER PARAMETERS[J]. Rare Metal Materials and Engineering,2024,53(11):3246~3258.]
DOI:10.12442/j. issn.1002-185X.20230616

复制
文章指标
  • 点击次数:69
  • 下载次数: 192
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-10-04
  • 最后修改日期:2023-11-17
  • 录用日期:2023-11-17
  • 在线发布日期: 2024-11-20
  • 出版日期: 2024-11-08