+高级检索
CsCl对NaCl-KCl-CsCl熔盐物理性质及铌涂层电沉积行为的影响
作者单位:

国防科技大学

中图分类号:

TG146.4+16

基金项目:

湖南省青年人才支持计划


Effect of CsCl on the physical properties of NaCl-KCl-CsCl molten salts and electrodeposition behavior of niobium coatings
Affiliation:

National University of Defense Technology

Fund Project:

the Support Program for Young Talents of Hunan

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [47]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    因其优异的综合理化性能,铌(Nb)被广泛应用于航空航天、核能和超导领域。其涂层制备方法中,熔盐电沉积技术沉积速率快、阴极电流效率高、绕镀性好,有望实现大规模工业化生产和应用。当前广泛使用的氟化物支持电解质体系毒性大、环保性差,亟待开展更环保的全氯化物支持电解质体系的开发工作。为实现支持电解质熔盐物性的调控和络合离子的稳定化,本文在NaCl-KCl体系中添加CsCl,制备全氯化物支持电解质体系,研究CsCl对支持电解质熔盐物理性质及Nb涂层电沉积行为的影响。结果表明,NaCl-KCl-CsCl三元混合熔盐的共晶温度约为485℃,随CsCl含量增加,熔盐的初晶温度先降低后增大,密度增大,电导率和表面张力减小。CsCl通过改变熔盐的初晶温度和电导率影响熔盐中离子的传质速度,进而影响电沉积Nb涂层的表面质量,其优选含量约为60wt.%。CsCl的添加可使熔盐中含氧络合离子NbOF63-的还原电位负于NbF72-,有助于获得不含氧杂质的Nb涂层。

    Abstract:

    Niobium (Nb) is widely used in aerospace, nuclear energy and superconducting fields, due to its excellent comprehensive physical and chemical properties. In the preparation methods of the Nb coating, the molten salt electrodeposition technology has fast deposition rate, high cathode current efficiency and is suitable for complex shape components, which is expected to realize large-scale industrialized production and application. Since the current widely used fluoride-supported electrolyte system is highly toxic and environmentally unfavorable, there is an urgent need to carry out the development of a more environmentally friendly all chloride supporting electrolyte system. To achieve the regulation of the molten salt’s physical properties of the supporting electrolyte and the stabilization of the complexing ions, this study adds CsCl to the NaCl-KCl system to prepare an all chloride supporting electrolyte system and investigates the effect of CsCl on the molten salt’s physical properties of the supporting electrolyte and the electrodeposition behavior of the Nb coating. The results showed that the eutectic temperature of the NaCl-KCl-CsCl ternary mixed molten salt was about 485 °C. With the increase of CsCl content, the initial crystallization temperature of molten salt decreased at first and then increased, the density increased, and the conductivity and surface tension decreased. CsCl affected the mass transfer rate of ions in molten salt by changing the initial crystal temperature and conductivity of molten salt, and then affected the surface quality of electrodeposited Nb coating, and its preferred content was about 60 wt.%. The addition of CsCl can make the reduction potential of the oxygen-containing complex ion NbOF63- in the molten salt negative to that of NbF72-, which was helpful to obtain Nb coatings without oxygen impurities.

    参考文献
    [1]任军帅, 张英明, 郭学鹏等. 射频超导腔用高纯铌材制备[J]. 稀有金属材料与工程, 2019, 48(2): 688~692.
    [2]Olivares-Navarrete R, Olaya J J, Ramírez C et al. Biocompatibility of Niobium Coatings[J]. Coatings, 2011, 1(1): 72~87.
    [3]刘绍蕖. 国外铌的应用状况[J]. 稀有金属与硬质合金, 1988, (1): 35~38.
    [4]Subramanian P R, Mendiratta M G, Dimiduk D M. The Development of Nb-Based Advanced Intermetallic Alloys for Structural Applications[J]. JOM, 1996, 48(1): 33~38.
    [5]屈乃琴. 钽铌及其合金与应用[J]. 稀有金属与硬质合金, 1998(2): 48~54.
    [6]黄虹, 黄金昌. 航空航天推进系统用铌基复合材料[J]. 稀有金属与硬质合金, 1999(3): 61~65.
    [7]Shi K, Zhang Y, Zhang J, et al. Electrochemical Properties of Niobium Coating for Biomedical Application[J]. Coatings, 2019, 9(9): 546~560.
    [8]Kuznetsov S A. Electrodeposition of Niobium Coatings on Long Conductors from a Copper Alloy[J]. Journal of the Electrochemical Society, 2019, 166(13): D694~ D699.
    [9]秦玉磊. 石英衬底上超导铌金属薄膜的制备技术研究[D]. 成都: 电子科技大学, 2014.
    [10]Tuffias R H, Brockmeyer J W, Fortini A J, et al. Engineering Issues of Iridium/Rhenium Rocket Engines Revisited [C]. 35th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit. Los Angeles: AIAA: 1999: 2752~2757.
    [11]Hála M, ?apek J, Zabeida O, et al. Pulse Management in High Power Pulsed Magnetron Sputtering of Niobium[J]. Surface and Coatings Technology, 2012, 206(19): 4186~4193.
    [12]Ganesan R., Treverrow B, Murdoch B, et al. Duty Cycle Control in Reactive High-Power Impulse Magnetron Sputtering of Hafnium and Niobium[J]. Journal of Physics D: Applied Physics, 2016, 49(24): 245201.
    [13]Latimer M L, Xiao Z L, Hua J, et al. Anisotropy of the Critical Temperature of a Supercon-ducting Niobium Thin Film with An Array of Nanoscale Holes in An External Magnetic Field[J]. Physical Review B, 2013, 87(2): 020507.
    [14]Hsieh J H, Lee R, Erck R A, et al. Niobium Coatings on 316l Stainless Steel for Improving Corrosion Resistance[J]. Surface and Coatings Technology, 1991, 49(3): 83~86.
    [15]曾飞, 赵斌, 潘峰. 离子束辅助沉积引发互不固溶系非晶相和亚稳晶相形成[J]. 材料科学与工艺, 2001(3): 277~336.
    [16]Brandolt C S, Noronha L C, Hidalgo G E N, et al. Niobium Coating Applied by HVOF as Protection Against Hydrogen Embrittlement of API 5CT P110 Steel[J]. Surface and Coatings Technology, 2017, 322: 10~18.
    [17]Brandolt C S, Souza J G, Kunst S R, et al. Niobium and Niobium-Iron Coatings on API 5LX 70 Steel Applied with HVOF[J]. Materials Research, 2014, 17(4): 866~877.
    [18]Russo R, Catani L, Cianchi A, et al. Niobium Coating of Cavities Using Cathodic Arc[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1394~1398.
    [19]Russo R, Catani L, Cianchi A, et al. High Quality Superconducting Niobium Films Produced by an Ultra-High Vacuum Cathodic Arc[J]. Superconductor Science and Technology, 2005, 18(7): L41.
    [20]Russo R, Cianchi A, Akhmadeev Y H, et al. UHV Arc for High Quality Film Deposition[J]. Surface and Coatings Technology, 2006, 201(7): 3987~3992.
    [21]郑明珉, 谭成文, 于晓东等. NbF5前驱体化学气相沉积铌涂层的生长动力学[J]. 稀有金属材料与工程, 2018, 47(1): 187~190.
    [22]Li C, Yan W, Shaowu Z, et al. Micro-Structures and Mechanical Properties of Nb/Re Layered Composite Produced by CVD[J]. Materials Science and Engineering: A, 2012, 536: 1~7.
    [23]Wei Y, Zhang D W, Wang J, et al. Microstructure and Deposition Kinetics of Nb Prepared by Chemical Vapor Deposition[J]. Modern Physics Letters B, 2018, 32(22): 1850257.
    [24]Liu Q, Zhang L, Cheng L, et al. Low Pressure Chemical Vapor Deposition of Niobium Coating on Silicon Carbide[J]. Applied surface science, 2009, 255(20): 8611~8615.
    [25]Popova A V, Kremenetsky V G, Kuznetsov S A. The Effect of the Second Coordination Sphere on Electrochemistry of Niobium Fluoride Complexes in Alkali Halide Melts I. Diffusion Coefficients of Nb(V) and Nb(IV) Complexes [J]. Journal of the Electrochemical Society, 2014, 161(9): H447~H452.
    [26]Marenkova E A, Kuznetsov S A. Complex Formation and Micropassivation at Electrodeposition of Niobium Coatings in Alkali Chloride-Fluoride Melts with Different Cationic Composition[J]. ECS Transactions, 2013, 50(11): 263~275.
    [27]Dubrovskiy A, Okunev M, Makarova O, et al. Superconducting Niobium Coatings Deposited on Spherical Substrates in Molten Salts[J]. Coatings, 2018, 8(6): 213.
    [28]Mellors G W, Senderoff S. Electrodeposition of Coherent Deposits of Refractory Metals: I. Niobium[J]. Journal of the Electrochemical Society, 1965, 112(3): 266~272.
    [29]Polyakova L P, Taxil P, Polyakov E G. Electrochemical Behavior and Codeposition of Titanium and Niobium in Chloride–Fluoride Melts[J]. Journal of Alloys and Compounds, 2003, 359(2): 244~255.
    [30]Kuznetsov S A. Electrochemistry of refractory metals in molten salts: Application for the creation of new and functional materials[J]. Pure and Applied Chemistry, 2009, 81(8): 1423-1439.
    [31]Kuznetsov S A, Marenkova E A, Kalinnikov V T. Micropassivation and complexation during electrodeposition of niobium coatings[J]. Doklady Chemistry, 2015, 463(1): 169–173.
    [32]Rudenko A, Isakov A, Apisarov A, et al. Liquidus Temperature and Electrical Conductivity of Molten Eutectic CsCl-NaCl-KCl Containing ReCl4 [J]. Journal of Chemical Engineering Data, 2019, 64(2): 567~573.
    [33]张胜全, 王准, 高永涛等. 钕电解氟化物体系熔化温度及高温物相的研究[J]. 稀土, 2018, 39(2): 66~73.
    [34]Huang Y, Bai S, Zhang H, et al. Growth Mechanism and Mechanical Property of Laminar Iridium Coating by Electrodeposition[J]. International Journal of Refractory Metals and Hard Materials, 2015, 50: 204~209.
    [35]He X F, Li Y G, Li Z H. Research on Conductivity of KCl–NaCl–NaF–SiO2 Molten Salt System[J]. Hydrometallurgy China, 2010, 29(1): 12.
    [36]Baumli P, Kaptay G. Wettability of Carbon Surfaces by Pure Molten Alkali Chlorides and Their Penetration into a Porous Graphite Substrate[J]. Materials Science and Engineering: A, 2008, 495(2): 192~196.
    [37]Li Y, Zhai Y, Tang G. Study on the Surface Tensions of Na2WO4-ZnO-WO3 System[J]. Nonferrous Metals, 2004, 5: 35~38.
    [38]郭琦, 李方义, 葛顺鑫等. KNO3-NaNO2二元熔盐体系的表面张力及粘度研究[J]. 功能材料, 2014, (13): 13036~13039.
    [39]Lantelme F, Berghoute Y, Von Barner J H, et al. The Influence of Oxide on the Electrochemical Processes in K2NbF7 -NaCl-KCl Melts[J]. Journal of the Electrochemical Society, 1995, 142(12): 4097.
    [40]Marshall B. Alpert, James A. Hamilton, Frank J. Schultz, William F. Sullivan. Electrolytic Preparation of Titanium from Fused Salts[J]. J. Electrochem. Soc., 1955, 59: 494~499.
    [41]Ramamurthy A C, Rangarajan S K. Quadrature Analysis of Linear Sweep Voltammetry[J]. Electrochimica Acta, 1981, 26: 111~115.
    [42]Hubbard A T, Anson F C. New Electrodes for Chronopotentiometry in Thin Layers of Solution[J]. Analytical Chemistry, 1964, 36: 723~726.
    [43]Popova A V, Kuznetsov S A. The Effect of the Second Coordination Sphere on Electrochemistry of Niobium Complexes in Alkali Halide Melts[J]. Journal of The Electrochemical Society, 2015, 163(2): H53~ H59.
    [44]Lantelme F, Barhoun A, Chevalet J. Electrochemical Behavior of Solutions of Niobium Chlorides in Fused Alkali Chlorides[J]. Journal of the Electrochemical Society, 1993, 140(2): 324~332.
    [45]Wang X, Duan S, Christensen E, et al. Electrochemical Reaction Processes of Niobium Ions in FLINAK Melt[J]. International Journal of Minerals, Metallurgy and Materials, 1999, 6(2): 83~89.
    [46]Gillesberg B, Bjerrum N J, Von Barner J H, et al. Electrochemical Investigation on the Redox Chemistry of Niobium in LiCl-KCl-KF-Na2O Melts[J]. Journal of the Electrochemical Society, 1997, 144(10): 3435~3442.
    [47]Chamelot P, Lafage B, Taxil P. Using Square-Wave Voltammetry to Monitor Molten Alkaline Fluoride Baths for Electrodeposition of Niobium[J]. Electrochimica Acta, 1998, 43(5-6): 607~616.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱利安,袁伟超,胡双鹏,王震,叶益聪,白书欣. CsCl对NaCl-KCl-CsCl熔盐物理性质及铌涂层电沉积行为的影响[J].稀有金属材料与工程,2024,53(5):1332~1342.[Zhu Lian, Yuan Weichao, Hu Shuangpeng, Wang Zhen, Ye Yicong, Bai Shuxin. Effect of CsCl on the physical properties of NaCl-KCl-CsCl molten salts and electrodeposition behavior of niobium coatings[J]. Rare Metal Materials and Engineering,2024,53(5):1332~1342.]
DOI:10.12442/j. issn.1002-185X.20230682

复制
文章指标
  • 点击次数:199
  • 下载次数: 665
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-11-01
  • 最后修改日期:2023-12-25
  • 录用日期:2024-01-05
  • 在线发布日期: 2024-05-28
  • 出版日期: 2024-05-22