+高级检索
自钝化W-Si-Zr合金的组织结构和抗氧化性能
作者:
作者单位:

1.华中科技大学 材料科学与工程学院 材料成形与模具技术国家重点实验室,湖北 武汉 430074;2.武汉理工大学 材料科学与工程学院,湖北 武汉 430070

中图分类号:

TG146.4+1

基金项目:

国家磁约束核聚变能发展研究专项(2018YFE0306104);材料成形与模具技术国家重点实验室开放课题研究基金(P2023-024)


Microstructure and Oxidation Resistance of Self-Passivating W-Si-Zr Alloys
Author:
Affiliation:

1.State Key Laboratory of Materials Processing and Die and Mould Technology,School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;2.School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用机械合金化和放电等离子体烧结技术制备了W-Si-Zr自钝化合金。利用XRD、XPS、SEM及EPMA等测试方法,表征了合金的微观组织结构,并测试其抗氧化性能。结果表明:合金包括富W、W5Si3、SiOxx=1,1.5,2)以及 ZrOxx=1,1.5,2)相。W5Si3为连续分布相,SiOx和ZrOx颗粒均匀分布在基体中,尺寸分别为1.0~2.5 μm和0.7~2.7 μm,且ZrOx颗粒常与SiOx颗粒共生。W5Si3对合金的抗氧化性能起到关键作用,添加Zr有助于W5Si3相的形成,其相面积达到了70.2%。在1000 ℃大气环境中W-Si-Zr合金的氧化速率约为W-Si合金的1/2,纯W的1/36。

    Abstract:

    Self-passivating W-Si-Zr alloys were prepared by mechanical alloying and spark plasma sintering. Microstructures of alloys were characterized by XRD, XPS, SEM and EPMA, and their oxidation resistance was tested. The results show that the alloy contains W-enriched, W5Si3, SiOx (x=1, 1.5, 2) and ZrOx (x=1, 1.5, 2) phases. The W5Si3 phase distributes continuously. SiOx and ZrOx particles are dispersed in the matrix with the sizes of 1.0–2.5 μm and 0.7–2.7 μm, respectively, and ZrOx particles are often associated with SiOx particles. The W5Si3 plays a key role in the oxidation resistance of the alloy. The addition of Zr contributes to the formation of W5Si3 phase, whose area reaches 70.2%. The oxidation rate of W-Si-Zr alloy is about 1/2 of that of W-Si alloy and 1/36 of that of pure W at 1000 ℃ in the air.

    参考文献
    [1] Philipps V. Journal of Nuclear Materials[J], 2011(S2): 415
    [2] Wang Y J, Peng H X, Zhou Y et al. Materials Science and Engineering A[J], 2011, 528: 1805
    [3] Chong Fali(种法力), Chen Junling(陈俊凌), Zheng Xuebin(郑 学斌). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2023, 52(2): 645
    [4] Zheng Xin(郑 欣), Bai Run(白 润), Wang Donghui(王东辉) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2011, 40 (10): 1871
    [5] Benedetto G D, Matteis P, Scavino G. International Journal of Impact Engineering[J], 2018, 115: 10
    [6] Cheng Z Y, Sun J R, Gao X et al. Journal of Alloys and Compounds[J], 2023, 930: 166768
    [7] Bucalossi J, Achard J, Agullo Q et al. Nuclear Fusion[J], 2023, 62: 042007
    [8] Bao Hongwei(包宏伟), Li Yan(李 燕), Ma Fei(马 飞). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2022, 51(3): 1100
    [9] Zhao Yiluo(赵乙椤), Lei Ming(雷 鸣), Zhang Xu(张 旭) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2021, 50(9): 3399
    [10] Webb W W, Norton J T, Wagner C. Journal of the Electrochemical Society[J], 1956,103(2): 107
    [11] Habainy J, Iyengar S, Surreddi K B et al. Journal of Nuclear Materials[J], 2018, 506: 26
    [12] Togaru M, Sainju R, Zhang L et al. Materials Characterization[J], 2021, 174: 111016
    [13] Koch F, Bolt H. Physica Scripta[J], 2007, T128: 100
    [14] Calvo A, Garcia-Rosales C, Koch F et al. Nuclear Materials and Energy[J], 2016, 9: 422
    [15] Wegener T, Klein F, Litnovsky A et al. Fusion Engineering and Design[J], 2017, 124: 183
    [16] Mackova A, Fernandes S, Matejicek J et al. Nuclear Materials and Energy[J], 2021, 29: 101085
    [17] Yan J, Li X, Wang Z L et al. Nuclear Materials and Energy[J], 2020, 22: 100733
    [18] Litnovsky A, Wegener T, Klein F et al. Plasma Physics and Controlled Fusion[J], 2017, 59(6): 1
    [19] Zhang Jian(张 剑), Liu Zongde(刘宗德), Ma Herong(马荷蓉) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2022, 51(10): 3602
    [20] Hunag Bo(黄 波), Li Xuan(李 轩), Xie Xiaoqing(谢小青) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2021, 50(2): 544
    [21] Liu W, Di J, Zhang W X et al. Corrosion Science[J], 2022, 163: 108222
    [22] Wegener T, Klein F, Litnovsky A et al. Nuclear Materials and Energy[J], 2016, 9: 394
    [23] Garcia-Rosales C, Lopez-Ruiz P, Alvarez-Martín S et al. Fusion Engineering and Design[J], 2014, 89(7–8): 1611
    [24] Litnovsky A, Wegener T, Klein F et al. Nuclear Materials and Energy[J], 2017, 12: 1363
    [25] Ren Lei(任 雷), Fu Guangyan(付广艳), Liu Enze(刘恩泽) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2023, 52(11): 3857
    [26] Tan X Y, Klein F, Litnovsky A et al. Corrosion Science[J], 2019, 147: 201
    [27] Ma M, Liang L, Tang B et al. Journal of Alloys and Compounds[J], 2015, 645: S217
    [28] Li Dawu(李大武), Wang Ke(王 克), Sun Ting(孙 挺) et al. The Chinese Journal of Process Engineering(过程工程学报)[J], 2010, 10(2): 298
    [29] Chen Shijie(陈时杰), Ye Chao(叶 超), Liu Wei(柳 炜) et al. Acta Materiae Compositae Sinica(复合材料学报)[J], 2023, 40(8): 4531
    [30] Liu W, Di J, Xue L H et al. Journal of Alloys and Compounds[J], 2018, 766: 739
    [31] Morant C, Sanz J M, Galan L et al. Surface Science[J], 1989, 218: 331
    [32] Yoshitaka N, Krauss A R, Yuping L et al. Journal of Nuclear Materials[J], 1996, 228(3): 346
    [33] Azdad Z, Marot L, Moser L et al. Scientific Reports[J], 2018, 8(1): 16251
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张世荣,陈时杰,王锐,叶超,薛丽红,周启来,严有为.自钝化W-Si-Zr合金的组织结构和抗氧化性能[J].稀有金属材料与工程,2025,54(3):741~746.[Zhang Shirong, Chen Shijie, Wang Rui, Ye Chao, Xue Lihong, Zhou Qilai, Yan Youwei. Microstructure and Oxidation Resistance of Self-Passivating W-Si-Zr Alloys[J]. Rare Metal Materials and Engineering,2025,54(3):741~746.]
DOI:10.12442/j. issn.1002-185X.20230722

复制
文章指标
  • 点击次数:8
  • 下载次数: 13
  • HTML阅读次数: 13
  • 引用次数: 0
历史
  • 收稿日期:2023-11-14
  • 最后修改日期:2024-01-03
  • 录用日期:2024-01-05
  • 在线发布日期: 2025-03-25
  • 出版日期: 2025-03-25