+高级检索
原位析出TiB2-Ti2AlN增强TiAl合金力学性能
作者:
作者单位:

1.衢州学院 浙江省空气动力装备技术重点实验室,浙江 衢州 324000;2.台州学院 材料科学与工程学院,浙江 台州 318000

基金项目:

National Natural Science Foundation of China (52171120, 52271106, 52071188); Zhejiang Province Natural Science Foundation of China (LZY22E010001)


Enhancement in Mechanical Properties of TiAl Alloys by In-Situ Precipitation of Hybrid TiB2-Ti2AlN
Author:
Affiliation:

1.Key Laboratory of Air-Driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou324000, China;2.School of Materials Science and Engineering, Taizhou University, Taizhou318000, China

Fund Project:

National Natural Science Foundation of China (52171120, 52271106, 52071188); Zhejiang Province Natural Science Foundation (LZY22E010001)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用放电等离子烧结技术对TiAl合金和BN纳米片混合粉末在1300 ℃下进行烧结,原位合成了TiB2-Ti2AlN/TiAl复合材料,并对TiAl复合材料的显微组织演变和室温力学性能进行了研究。结果表明,添加低含量BN纳米片的TiAl复合材料为全片层组织,而添加高含量BN纳米片的TiAl复合材料向近片层组织转变。此外,原位合成的TiB2-Ti2AlN颗粒均匀分布在片层团晶界处,显著细化了复合材料组织。当添加质量分数为0.5%的BN纳米片时,TiB2-Ti2AlN颗粒在片层团晶界处形成连续核壳结构。室温压缩和摩擦磨损结果表明,随着BN纳米片质量分数从0%增加到1%,TiAl复合材料的显微硬度和抗压缩强度显著提高,摩擦磨损系数从0.59降低到0.47,磨损率降低了29.9%。TiAl复合材料优异的力学性能主要归因于原位析出的TiB2-Ti2AlN颗粒、细化的显微组织和核壳结构所产生的强化效应。

    Abstract:

    TiAl alloy was mixed with BN nanoplates and then sintered at 1300 °C through spark plasma sintering technique, and the hybrid TiB2-Ti2AlN/TiAl composites were in-situ prepared. The microstructural evolution and mechanical properties at room temperature of TiAl composites were investigated. Results show that a fully lamellar microstructure can be achieved in the TiAl composites with BN nanoplates of lower content, whereas a transformation to the nearly lamellar microstructure can be observed under higher BN nanoplate content conditions. The microstructure of TiAl composites is significantly refined due to the even distribution of in-situ prepared TiB2-Ti2AlN particles at the lamellar colony boundaries. Notably, a continuous core-shell structure of TiB2-Ti2AlN particles is formed at the lamellar grain boundary after adding 0.5wt% BN nanoplates. The results of compression and friction wear at room temperature show that the hardness and compressive strength of TiAl composites are greatly improved with the increase in BN nanoplate content from 0wt% to 1wt%. Meanwhile, the average coefficient of friction decreases from 0.59 to 0.47, and the wear rate decreases by 29.9%. These remarkable mechanical properties are mainly attributed to the strengthening effects of the in-situ formation of TiB2-Ti2AlN particles, refined microstructure, and core-shell structure.

    参考文献
    [1] Ding Jie, Zhang Minghe, Liang Yongfeng et al. Acta Mater-ialia[J], 2018, 161: 1
    [2] Liu Chengze, Wang Yupeng, Han Weizhong et al. ACS Applied Materials & Interfaces[J], 2022, 14: 8394
    [3] Yang Jieren, Gao Zitong, Zhang Xiaogan et al. Metallurgical and Materials Transactions A[J], 2020, 51A: 5295
    [4] You Ruyue, Wang Qiang, Zhao Chunling. Materials China[J], 2023, 42(8): 669 (in Chinese)
    [5] Guo Yingchao, Liang Yongfeng, Lin Junpin. Intermetallics[J], 2023, 159: 107937
    [6] Liu Pei, Hou Bo, Wang Anqi et al. Journal of Materials Science & Technology[J], 2023, 159: 21
    [7] Tang Bin, Cheng Liang, Kou Hongchao et al. Intermetallics[J], 2015, 58: 7
    [8] Youn S J, Kim Y K, Kim H S et al. Intermetallics[J], 2023, 153: 107784
    [9] Wang Yupeng, Rong Guangfei, Ma Tengfei et al. Journal of Materials Research and Technology[J], 2024, 28: 1667
    [10] Wei Yuanzheng, Qiu Feng, Shu Shili et al. Materials Science and Engineering A[J], 2022, 845: 143214
    [11] Chen Ruirun, Ma Tengfei, Guo Jingjie et al. Rare Metal Materials and Engineering[J], 2017, 46(S1): 20 (in Chinese)
    [12] Tan Yingmei, Chen Ruirun, Fang Hongze et al. Intermetallics[J], 2018, 98: 69
    [13] Li Wei, Li Ming, Liu Jie et al. Journal of Alloys and Com-pounds[J], 2019, 770: 640
    [14] Wu Zeen, Hu Rui, Zhang Tiebang et al. Materials Characteri-zation[J], 2017, 124: 1
    [15] Ma Tengfei, Li Qiaoyu, Wang Yupeng et al. Intermetallics[J], 2022, 146: 107563
    [16] Hou Bo, Liu Pei, Wang Anqi et al. Vacuum[J], 2022, 201: 111124
    [17] Liu Pei, Sun Dongli, Han Xiuli et al. Materials & Design[J], 2017, 130: 239
    [18] García-Martínez E, Miguel V, Martínez A et al. Wear[J], 2021, 484–485: 203992
    [19] Mengis L, Grimme C, Galetz M C. Wear[J], 2019, 426–427: 341
    [20] Cheng Jun, Yang Jun, Zhang Xinghua et al. Intermetallics[J], 2012, 31: 120
    [21] Wang Yupeng, Ma Tengfei, Chen Zhanxing et al. Materials Science and Engineering A[J], 2024, 889: 145873
    [22] Tan Chaolin, Zou Ji, Wang Di et al. Composites Part B: Engineering[J], 2022, 236: 109820
    [23] Lapin J, Kamyshnykova K, Pelachová T et al. Intermetallics[J], 2021, 128: 107007
    [24] Ghorbani H R, Kermanpur A, Rezaeian A et al. Materials Today Communications[J], 2020, 25: 101494
    [25] Ding Hao, Cui Xiping, Zhang Yuanyuan et al. International Journal of Plasticity[J], 2023, 171: 103805
    [26] Ding Hao, Cui Xiping, Wang Zhiqi et al. Journal of Materials Science & Technology[J], 2022, 107: 70
    [27] Yu Yonghao, Kou Hongchao, Wang Yichao et al. Acta Mater- ialia[J], 2023, 255: 119036
    [28] Shi Yeqi, Szlufarska I. Acta Materialia[J], 2020, 200: 432
    引证文献
引用本文

王玉鹏,李思颖,马腾飞,王晓红,董多,朱冬冬.原位析出TiB2-Ti2AlN增强TiAl合金力学性能[J].稀有金属材料与工程,2024,53(12):3329~3337.[Wang Yupeng, Li Siying, Ma Tengfei, Wang Xiaohong, Dong Duo, Zhu Dongdong. Enhancement in Mechanical Properties of TiAl Alloys by In-Situ Precipitation of Hybrid TiB2-Ti2AlN[J]. Rare Metal Materials and Engineering,2024,53(12):3329~3337.]
DOI:10.12442/j. issn.1002-185X.20240001

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-01
  • 最后修改日期:2024-03-20
  • 录用日期:2024-03-22
  • 在线发布日期: 2024-12-19
  • 出版日期: 2024-12-16