+高级检索
水平电极稀土电解槽阳极气泡动力学及电解液流动数值模拟
作者:
作者单位:

1.中国科学院 金属研究所 沈阳材料科学国家研究中心,辽宁 沈阳 110016;2.中国科学技术大学 材料科学与工程学院,辽宁 沈阳 110016;3.包头天石稀土新材料有限责任公司,内蒙古 包头 014060

基金项目:

the National Natural Science Foundation of China (Nos. 52101165) ; the Inner Mongolia Science and Technology Major Project(No.2020ZD0010); the Key Research Program of the Chinese Academy of Sciences, Grant No. ZDRW-CN-2021-3


Simulation of Bubble Dynamics and Electrolyte Flow in Rare Earth Electrolysis Cell with Horizontal Electrode
Author:
Affiliation:

1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang110016, China;2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang110016, China;3.Baotou Skyrock Rare Earth New Material Co., Ltd, Baotou014060, China

Fund Project:

National Natural Science Foundation of China (52101165); Inner Mongolia Science and Technology Major Project (2020ZD0010); Key Research Program of the Chinese Academy of Sciences (ZDRW-CN-2021-3)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [8]
  • | | |
  • 文章评论
    摘要:

    建立了一个二维瞬态数学模型,分别描述了水平电极稀土电解槽中阳极气泡动力学和气泡诱导的电解液运动。结果表明,随着阳极倾斜角度的增大,阳极气泡厚度逐渐增大。此外,与常规阳极相比,倾斜和倒角阳极有利于缩短气泡长度,提高气泡速度。同时,电解槽内气泡诱导的电解质运动可以改善稀土氟氧化物的分布和运动过程,从而提高电流效率。最后,基于电解液流动提出了一种新型的加料方式。

    Abstract:

    A 2D transient mathematical model was established to separately describe the anode bubble dynamics and the bubble-induced electrolyte motion in the rare earth electrolysis cell with horizontal electrode. Results indicate that with the increase in the anode inclined angle, the maximum bubble thickness is increased gradually. Furthermore, compared with the conventional anode, the inclined and chamfered anodes are conductive to the bubble length reduction and the bubble velocity improvement. Meanwhile, the bubble-induced electrolyte motion in the electrolysis cell can improve the distribution and transport process of oxyfluorides, thereby enhancing the current efficiency. Finally, a novel feeding method based on the electrolyte flow is proposed.

    参考文献
    [1] Liu H, Zhang Y, Luan Y K et al. Metals[J], 2020, 10(10): 1376
    [2] Zuo Z P, Liu Y B, Yang X et al. Journal of Rare Earths[J], 2022, 40(6): 996
    [3] Liu S Z, Chen L Y, Li B et al. Electrochimica Acta[J], 2014, 147: 82
    [4] Zhou J, Meng X H, Zhang R et al. Electrocatalysis[J], 2021,12(6): 628
    [5] Ding L, Wang X P, Yan Y D et al. Journal of Rare Earths[J], 2023, 41(8): 1250
    [6] Li M, Liu C Y, Ding A T et al. Journal of Environmental Chemical Engineering[J], 2023, 11(3): 109746
    [7] Abbasalizadeh A, Seetharaman S, Venkatesan P et al. Electrochimica Acta[J], 2019, 310: 146
    [8] Han W, Li M, Zhang M L et al. Rare Metals[J], 2016,35(11): 811
    [9] Sahoo D K, Singh H, Krishnamurthy N. Rare Metals[J], 2013, 32(3): 305
    [10] Sarfo P, Das A, Young C. Separation and Purification Technology[J], 2021, 256: 117770
    [11] Liu Y L, Ren H, Yin T Q et al. Electrochimica Acta[J], 2019, 326: 134971
    [12] Liu Zhongxing, Qi Suci. Rare Metal Materials and Engineer- ing[J], 2007, 36(2): 194 (in Chinese)
    [13] Li Zejin, Dan Linyang, Li Xuemin et al. Rare Metal Materials and Engineering[J], 2017, 46(12): 3767 (in Chinese)
    [14] Kang Jia, Liu Yubao, Yu Bing et al. Materials China[J], 2022, 41(2): 148 (in Chinese)
    [15] Xu H B, Zhang W, Wang C S et al. Appl Radiat Isot[J], 2022, 182: 110149
    [16] Sun M J, Li B K, Liu Z Q. Powder Technology[J], 2023, 428: 118854
    [17] Zhao Z B, Wang Z W, Gao B L et al. Metallurgical and Materials Transactions B[J], 2016, 47(3): 1962
    [18] Tao W J, Li T F, Wang Z L et al. Metallurgical and Materials Transactions B[J], 2015, 47(1): 23
    [19] Liu X, Xue J L, Guo Z C et al. Journal of Materials Science & Technology[J], 2019, 35(7): 1422
    [20] Yang S H, Yang F L, Liao C F et al. Journal of Rare Earths[J], 2010, 28(S1): 385
    [21] Yasuda K, Oishi T, Kagotani T et al. Journal of Alloys and Compounds[J], 2021, 889: 161605
    [22] Bo Y X, Wu X, Zhou Y H et al. Flow Measurement and Instrumentation[J], 2022, 85: 102156
    [23] Garoosi F, Merabtene T, Mahdi T F. Ocean Engineering[J], 2022, 247: 110711
    [24] Li X N, Liu M Y, Dong T T et al. Chemical Engineering Research and Design[J], 2020, 155: 108
    [25] Wang Q, Li B K, He Z et al. Metallurgical and Materials Transactions B[J], 2013, 45(1): 272
    [26] Sun M J, Li B K, Liu Z Q et al. Chemical Engineering Jour- nal[J], 2022, 428: 131182
    [27] Wang Q, Sun M J, Li B K et al. Transactions of Nonferrous Metals Society of China[J], 2018, 28(8): 1670
    [28] Mulbah C, Kang C, Mao N et al. Progress in Nuclear Energy[J], 2022, 154: 104478
    [29] Vaishnavi G N V S, Ramarajan J, Jayavel S. Thermal Science and Engineering Progress[J], 2023, 39: 101718
    [30] Brackbill J U, Kothe D B, Zemach C. Journal of Computational Physics[J], 1992, 100(2): 335
    [31] Hirt C W, Nichols B D. Journal of Computational Physics[J], 1981, 39(1): 201
    [32] Rajamani K, Jasper M. Nature[J], 1999, 398(6724): 208
    [33] Le Thanh K C, Parzani C, Vignal M H. Journal of Computational Physics[J], 2007, 225(2): 1937
    [34] Huttenhuis P J G, Kuipers J A M, Swaaij W P M. Chemical Engineering Science[J], 1996, 51(24): 5273
    [35] Zhu X P, Sun S C, Sun T et al. Journal of Rare Earths[J], 2020, 38(6): 676
    [36] Zhu X, Sun S, Lu S et al. Thermochimica Acta[J], 2016, 636: 42
    [37] Subramaniam A B, Abkarian M, Mahadevan L et al. Nature[J], 2005, 438(7070): 930
    [38] Zhang K, Feng Y, Schwarz P et al. Industrial & Engineering Chemistry Research[J], 2013, 52(33): 11378
    [39] Sun M J, Li B K, Li L et al. Metallurgical and Materials Transactions B[J], 2017, 48(6): 3161
    [40] Gaurav K, Mittal G, Karn A. Chemical Engineering Science[J], 2022, 250: 117395
    [41] Vékony K, Kiss L I. Metallurgical and Materials TransactionsB[J], 2010, 41(5): 1006
    [42] Orvalho S, Stanovsky P, Ruzicka M C. Chemical Engineering Journal[J], 2021, 406: 125926
    [43] Huang Y P, Wang Z W, Yang Y J et al. Metals[J], 2018,8(10): 806
    [44] Osarinmwian C. Applied Physics A[J], 2017, 123: 150
    [45] Zhu X P, Sun S C, Liu C et al. Journal of Rare Earths[J], 2018, 36(7): 765
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘航,杨超云,张耀,栾义坤,李殿中.水平电极稀土电解槽阳极气泡动力学及电解液流动数值模拟[J].稀有金属材料与工程,2024,53(12):3291~3298.[Liu Hang, Yang Chaoyun, Zhang Yao, Luan Yikun, Li Dianzhong. Simulation of Bubble Dynamics and Electrolyte Flow in Rare Earth Electrolysis Cell with Horizontal Electrode[J]. Rare Metal Materials and Engineering,2024,53(12):3291~3298.]
DOI:10.12442/j. issn.1002-185X.20240023

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-13
  • 最后修改日期:2024-04-24
  • 录用日期:2024-05-08
  • 在线发布日期: 2024-12-19
  • 出版日期: 2024-12-16