+高级检索
Gd不锈钢的时效处理及腐蚀行为
作者:
作者单位:

1.太原科技大学 材料科学与工程学院,山西 太原 030024;2.中国科学院金属研究所 沈阳材料科学国家研究中心,辽宁 沈阳 110016;3.中国科学院金属研究所 师昌绪先进材料创新中心,辽宁 沈阳 110016;4.中国科学技术大学 材料科学与工程学院,辽宁 沈阳 110016;5.中国科学院金属研究所 核用材料与安全评价重点实验室,辽宁 沈阳 110016

基金项目:

SYNL (L2019F15); Ling Chuang Research Project of China National Nuclear Corporation (CNNC-LCKY-202279)


Annealing Treatment and Corrosion Behavior of Gd-containing Stainless Steel
Author:
Affiliation:

1.School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China;2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;3.Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;4.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China;5.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

Fund Project:

Research Foundation of Shenyang National Laboratory for Materials Science (L2019F15); Ling Chuang Research Project of China National Nuclear Corporation (CNNC-LCKY-202279)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    研究了含1wt% Gd中子吸收双相不锈钢在不同温度时效后的微观结构与腐蚀行为。结果表明,材料中含Gd第二相的体积比以1080 ℃为转折点,先增后减。在1080 ℃时效处理的样品中,主要以第二相为双相M-Gd化合物(M=Fe,Cr,Ni),其核心为M3Gd相,外层为M12Gd相。在1140 ℃时效处理后,M3Gd为主要第二相。同时,研究了这两种样品在NaCl、HCl及H3BO3溶液中的腐蚀行为。1140 ℃处理后的样品具有相对较低的腐蚀速率。在NaCl和HCl溶液中,M3Gd较M12Gd具有较高的电化学活性;而在H3BO3溶液中,M3Gd则较为稳定。

    Abstract:

    The microstructures and corrosion behavior of 1.0wt% Gd-containing neutron-absorbing duplex stainless steel annealed at different temperatures were studied. Results reveal that the content of Gd-containing secondary phase increases with increasing the annealing temperatures to 1080 ℃, and then decreases. In the sample annealed at 1080 ℃, M-Gd (M=Fe, Cr, Ni) intermetallic with M3Gd as the core phase and M12Gd as the shell is the primary secondary phase. In the sample annealed at 1140 ℃, M3Gd phase is dominant. The corrosion behavior of the two annealed steel samples were analyzed in NaCl, HCl and H3BO3 solutions. It is found that the sample annealed at 1140 ℃ has lower corrosion rate. M3Gd is more electrochemically active than M12Gd when the sample is immersed in NaCl and HCl solutions, but more noble in H3BO3 solution.

    参考文献
    [1] Soliman S E, Youchison D L, Baratta A J et al. Nuclear Technology[J], 1991, 96(3): 346
    [2] Hu Xiaogang, Du Chengjie, Pan Xiaolong et al. MaterialsChina[J], 2024, 43(2): 151 (in Chinese)
    [3] Li Aodi, Liang Tian, Zhang Xueliang et al. Rare Metal Materials and Engineering[J], 2024, 53(3): 736 (in Chinese)
    [4] Robino C V, Michael J R, DuPont J N et al. Journal of Materials Engineering and Performance[J], 2003, 12: 206
    [5] Jung M Y, Baik Y, Choi Y et al. Nuclear Engineering and Technology[J], 2019, 51(1): 207
    [6] Kang J Y, Jang J H, Kim S D et al. Journal of Nuclear Mate- rials[J], 2020, 542: 152462
    [7] Stoulil J, Hemmer V, ?efl V et al. Materials and Corrosion[J], 2015, 66(4): 342
    [8] Lister T E, Mizia R E, Pinhero P J et al. Corrosion[J], 2005,61(7): 706
    [9] Mizia R E, Lister T E, Pinhero P J et al. Nuclear Technology[J], 2006, 155(2): 133
    [10] Mizia R E, Lister T E. Nuclear Technology[J], 2011, 176(1): 9
    [11] DuPont J N, Robino C V, Michael J R et al. Welding Journal[J], 2004, 83(11): 289
    [12] Zhou Y T, Zan Y N, Wei X X et al. Corrosion Science[J], 2019, 153: 74
    [13] Zhou Y T, Zan Y N, Wang Q Z et al. Corrosion Science[J], 2020, 174: 108808
    [14] Zan Y N, Zhang Q, Zhou Y T et al. Journal of Nuclear Mate-rials[J], 2019, 526: 151788
    [15] Chen Hongsheng, Wang Wenxian, Nie Huihui et al. Rare Metal Materials and Engineering[J], 2020, 49(12): 4358 (in Chinese)
    [16] Chen Hongsheng, Wang Wenxian. Rare Metal Materials and Engineering[J], 2017, 46(2): 392 (in Chinese)
    [17] Choi Y, Moon B M, Sohn D S. Nuclear Engineering and Technology[J], 2013, 45(5): 689
    [18] Cetin M, ?lmez E. Protection of Metals and Physical Chemistry of Surfaces[J], 2020, 56: 619
    [19] Gu Mingfei, Huang Dagui, Zhao Yong et al. Rare Metal Materials and Engineering[J], 2022, 51(12): 4726 (in Chinese)
    [20] Ho S L, Yue H, Tegafaw T et al. ACS Omega[J], 2022, 7(3): 2533
    [21] Kang Y R, Lee M W, Kim G N. Nuclear Science and Engineering[J], 2015, 180(1): 86
    [22] Lee S W, Ahn J H, Moon B M et al. Materials & Design[J], 2020, 194: 108906
    [23] Zhang W, Li C, Su X. Journal of Phase Equilibria[J], 1998,19(1): 56
    [24] Saidi M, Walha S, Nouri K et al. Journal of Alloys and Compounds[J], 2019, 792: 87
    [25] Zhang Cheng, Pan Jie, Wang Zixie et al. Nuclear Engineering and Technology[J], 2023, 55(5): 1541
    [26] Qi Z D, Yang Z, Meng X F et al. Materials Today Communi-cations[J], 2023, 37: 107315
    [27] Andersson J O, Helander T, H?glund L et al. Calphad[J], 2002, 26(2): 273
    [28] Wang Yurong, Wu Yu, Li Yongwang et al. Heat Treatment of Metals[J], 2023, 48(2): 200 (in Chinese)
    [29] Qi Zhengdong, Yang Zhong, Li Jianping et al. Materials[J], 2022, 15(9): 3255
    [30] Khan Z. Journal of the Southern African Institute of Mining and Metallurgy[J], 2012, 112(4): 309
    [31] Ha H Y, Jang J H, Lee T H et al. Corrosion Science[J], 2021, 192: 109798
    [32] Ha H Y, Kim S D, Jang J H et al. Journal of The Electrochemical Society[J], 2020, 167(10): 101506
    [33] Mizia R E, Lister T E, Pinhero P J et al. Nuclear Technology[J], 2006, 155(2): 133
    [34] Zhang Shenghan, Lu Quan, Xu Yunfei et al. International Journal Electrochemical Science[J], 2018, 13: 3246
    [35] Pan Jie, Wang Zixie, Mei Qiliang et al. Scripta Materialia[J], 2023, 234: 115575
    [36] Mizia R E, Lister T E, Pinhero P J et al. Corrosion 2003[C]. California: Nace Corrosion, 2003: NACE-03679
    [37] Murphy G W. Science[J], 1966, 154(3756): 1537
    [38] Ha H Y, Lee T H, Jo H H et al. Journal of Nuclear Materials[J], 2023, 578: 154367
    [39] Horkans J. Journal of the Electrochemical Society[J], 1979,126(11): 1861
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

解曼曼,贾洞箫,贾茜霖,赵菲,梁田,周杨韬.含Gd不锈钢的时效处理及腐蚀行为[J].稀有金属材料与工程,2025,54(4):871~878.[Xie Manman, Jia Dongxiao, Jia Xilin, Zhao Fei, Liang Tian, Zhou Yangtao. Annealing Treatment and Corrosion Behavior of Gd-containing Stainless Steel[J]. Rare Metal Materials and Engineering,2025,54(4):871~878.]
DOI:10.12442/j. issn.1002-185X.20240115

复制
文章指标
  • 点击次数:14
  • 下载次数: 51
  • HTML阅读次数: 32
  • 引用次数: 0
历史
  • 收稿日期:2024-03-05
  • 最后修改日期:2025-03-18
  • 录用日期:2024-05-23
  • 在线发布日期: 2025-04-23
  • 出版日期: 2025-04-21