+高级检索
Ti3AlC2-玻璃-陶瓷涂层对钛合金的抗氧化保护性能
作者:
作者单位:

四川大学材料科学与工程学院

中图分类号:

TQ 630.7

基金项目:

四川省科技计划资助项目(No.2023NSFSC0965)和四川省科技计划重点研发项目(No.2023ZDZX0028)


High-temperature antioxidation protection and mechanism of Ti3AlC2-glass-ceramic coating on titanium alloy
Author:
Affiliation:

College of Materials Science and Engineering,Sichuan University,Sichuan Chengdu

Fund Project:

The Sichuan Science and Technology Program (Nos. 2023NSFSC0965), and the Sichuan Province Science and Technology Plan Key R&D Projects (Nos. 2023ZDZX0028)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为改善玻璃涂层对钛合金的高温抗氧化保护效果,本文通过球磨法在纯玻璃涂层浆料中引入Ti3AlC2增强相粉末,将浆料刮涂在TC4合金表面并进行抗氧化测试。结果表明,当Ti3AlC2添加量为5 wt.%(TAC5涂层)时,TC4合金基底α污染层的厚度最薄,约为65.78 μm。在相同测试条件下,TAC5涂层的α污染层厚度相比于纯玻璃涂层减少约四分之一。Ti3AlC2增强相与渗入涂层中的氧气反应,从而减少基底与氧气的接触,提高涂层对TC4合金的高温抗氧化保护能力。

    Abstract:

    In order to enhance the high-temperature antioxidant protection provided by glass coating on titanium alloy, this study introduces the Ti3AlC2 reinforcing phase into pure glass coating slurry by ball milling method, and scrapes the slurry onto the surface of TC4 alloy and conducts antioxidant test. The results show that when 5 wt.% Ti3AlC2 (TAC5 coating) was added, the α-contamination layer thickness of the TC4 alloy substrate is minimized, measuring approximately 65.78 μm. In comparison to the pure glass coating under similar test conditions, the α-contamination layer thickness of the TAC5 coating is reduced by about one quarter. This reduction occurs as the Ti3AlC2 reinforcing phase reacts with the infiltrated oxygen in the coating, thereby diminishing contact between the substrate and oxygen and improving the coating’s ability to safeguard the TC4 alloy against oxidation at elevated temperatures.

    参考文献
    [1] Xie Faqin(谢发勤), He Peng(何鹏), Wu Xiangqing(吴向清) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2022,51(4): 1514
    [2] Anil Kumar V., Gupta R. K., Prasad M. J. N. V. et al. Journal of Materials Research[J],2021,36(3): 689
    [3] Smokovych Iryna, Scheffler Michael, Li Shibo et al. Advanced Engineering Materials[J], 2020,22(4): 1901224
    [4] Guleryuz Hasan,Cimenoglu Huseyin Journal of Alloys and Compounds[J], 2009,472(1-2): 241
    [5] Cheng Jin, Feng Yixiong, Tan Jianrong et al. Journal of materials processing technology[J], 2008,208(1-3): 222
    [6] Yu Jiadou(于家斗), Qi Daheng(齐大蘅) Rare Metal Materials and Engineering(稀有金属材料与工程) [J], 1985, (01): 46
    [7] Kubatik T., Jaglova M., Kalabisova E. et al. Journal of Alloys and Compounds[J], 2011,509(18): 5493
    [8] Zafir Alam Md., Das Dipak K Corrosion science[J], 2009,51(6): 1405
    [9] Das D.K., Alam Z. Surface and Coatings Technology[J], 2006, 201(6): 3406
    [11] Xiao Lianghong, Huang Shunqi, Wang Yu et al. Journal of Materials Engineering and Performance[J], 2022,31(1): 534
    [12] Moskalewicz T., Smeacetto F., Cempura G. et al. Surface and Coatings Technology[J], 2010,204(21-22): 3509
    [13] Wang Junzhe(王俊哲), Gao Minghao(高明浩), Xu Na(徐娜) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2023, 52(12): 4355
    [14] Lai Maolin(赖茂林), Gua Lanfang(郭兰芳), Ge Liangquan(葛良全) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2023, 52(11): 3691
    [15] Wu Jiaojiao, Cheng Yuxian, Shen Mingli et al. Corrosion science[J], 2022, 207: 110575
    [16] Xiao Zunqi, Tan Fatang, Wang Wei et al. Ceramics International[J], 2015,41(1): 325
    [17] Yan Gaosheng, Bai Zhiwen, Wu Yihan et al. Corrosion science[J], 2023,225: 111622
    [18] Yu Fang, Gu Dongguang, Zheng Yifeng et al. Journal of Alloys and Compounds[J], 2017,729: 453
    [19] Zhang H. X., Dai J. J., Sun C. X. et al. Materials and Manufacturing Processes[J], 2018, 33(10): 1037
    [20] Chen Hongfei, Hu Biao, Wang Jingwen et al. Surface and Coatings Technology[J], 2023, 465: 129610
    [21] Sun Xuxuan(孙旭轩), Chen Hongfei(陈宏飞), Yang Guang(杨光), et al. Journal of Inorganic Materials(无机材料学报)[J], 2017, 32(12): 1269
    [22] Zhao Zhuoling(赵卓玲), Feng Xiaoming(冯小明), Ai Taotao(艾桃桃) Bulletin of the Chinese Ceramic Society(硅酸盐通报)[J], 2011,30(1): 4
    [23] Wang X. H., Zhou Y. C. Journal of Materials Chemistry[J], 2002,12(9): 2781
    [24] Du Shaiwei(杜陕文), Zhang Yansheng(张延生) Chinese Journal of Rare Matals(稀有金属)[J], 2004,28(1): 277
    [25] Matson Dean W., Sharma Shiv K., Philpotts John A. Journal of non-crystalline solids[J], 1983,58(2-3): 323
    [26] McMillan Paul American Mineralogist[J], 1984,69(7-8): 622
    [27] De Bonfils J., Peuget S., Panczer G. et al. Journal of non-crystalline solids[J], 2010,356(6-8): 388
    [28] Manara D., Grandjean A., Neuville D. R. American Mineralogist[J], 2009,94(5-6): 777
    [29] Furukawa Toshiharu, White William B. Journal of the American Ceramic Society[J], 1981,64(8): 443
    [30] Li Hong, Su Yali, Li Liyu et al. Journal of non-crystalline solids[J], 2001,292(1-3): 167
    [31] Gasharova Biliana, Mihailova Boriana, Konstantinov Ludmil European Journal of Mineralogy[J], 1997,9: 935
    [32] Song Mun-Seon, Vijayarangamuthu Kalimuthu, Han EunJi et al. Korean Journal of Chemical Engineering[J], 2016,33(8): 2392
    [33] Moseenkov S. I., Kuznetsov V. L., Zolotarev N. A. et al. Materials[J], 2023,16(3): 1112
    [34] Liu Guangming(刘光明), Li Meishuan(李美栓), Zhou Yanchun(周延春) et al. Chinese Journal ofMaterials Reasearch(材料研究学报)[J], 2002,16(3): 5
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

原豪杰,田馨,刘颖. Ti3AlC2-玻璃-陶瓷涂层对钛合金的抗氧化保护性能[J].稀有金属材料与工程,2024,53(10):2873~2881.[Yuan Haojie, Tian Xin, Liu Ying. High-temperature antioxidation protection and mechanism of Ti3AlC2-glass-ceramic coating on titanium alloy[J]. Rare Metal Materials and Engineering,2024,53(10):2873~2881.]
DOI:10.12442/j. issn.1002-185X.20240187

复制
文章指标
  • 点击次数:116
  • 下载次数: 264
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-03-29
  • 最后修改日期:2024-05-10
  • 录用日期:2024-05-20
  • 在线发布日期: 2024-10-17
  • 出版日期: 2024-09-27