+高级检索
DZ125镍基高温合金高温蠕变期间的组织演化及变形机制
作者:
作者单位:

1.贵州工程应用技术学院 机械工程学院,贵州 毕节 551700;2.贵州交通职业技术大学 机械电子工程系,贵州 贵阳 551400

作者简介:

通讯作者:

中图分类号:

基金项目:


Microstructure Evolution and Deformation Mechanism of DZ125 Ni-based Superalloy During High-Temperature Creep
Author:
Affiliation:

1.School of Mechanical Engineering, Guizhou University of Engineering Science, Bijie 551700, China;2.Department of Mechanical and Electronic Engineering, Guizhou Communications Polytechnic University, Guiyang 551400, China

Fund Project:

Guizhou Province Science and Technology Plan Project (QKHJC-ZK[2024]yiban604); Bijie City Science and Technology Project (BKLH[2023]9); Technology Project of Bijie City (BKLH[2023]36); Natural Science Research Project of Guizhou Higher Education Institutions of China (QJJ[2023]047); Science and Technology Project of Guizhou Department of Transportation (2022-121-011); Guizhou Province Science and Technology Plan Project (CXTD[2021]008); Sanmenxia City Science and Technology Bureau Science and Technology Research Project (2022002005)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通过对DZ125合金进行蠕变性能测试及组织形貌观察,研究了DZ125合金在高温蠕变条件下的组织演化及变形机制。结果表明,在高温蠕变初期,首先在γ基体通道中运动的两组不同Burgers矢量的混合位错相遇发生反应形成γ'/γ两相界面四边形位错网,γ'相形成筏状组织是在位错网形成之后,随着蠕变的进行,四边形位错网逐渐转变为六边形和类四边形位错网。稳态蠕变期间合金的变形机制是大量位错在基体中滑移和攀移越过筏状γ'相。蠕变后期,位错可在位错网破损处剪切进入筏状γ'相,剪切进入筏状γ'相的位错发生交替滑移使筏状γ/γ'两相扭曲、折断,致使筏状γ/γ'两相界面发生微孔聚集,形成微裂纹,随着蠕变的继续进行微裂纹不断扩展,直至蠕变断裂,是合金在高温蠕变后期的损伤与断裂机制。

    Abstract:

    The microstructure evolution and deformation mechanism of a DZ125 superalloy during high-temperature creep were studied by means of microstructure observation and creep-property tests. The results show that at the initial stage of high-temperature creep, two sets of dislocations with different Burgers vectors move and meet in γ matrix channels, and react to form a quadrilateral dislocation network. And γ′ phases with raft-like microstructure are generated after the formation of dislocation networks. As creep progresses, the quadrilateral dislocation network is gradually transformed into hexagonal and quadrilateral dislocation networks. During steady stage of creep, the superalloy undergoes deformation with the mechanism that a great number of dislocations slip and climb in the matrix across the raft-like γ′ phases. At the later stage of creep, the raft-like γ′ phases are sheared by dislocations at the breakage of dislocation networks, and then alternate slip occurs, which distorts and breaks the raft-like γ′/γ phases, resulting in the accumulation of micropores at the raft-like γ′/γ interfaces and the formation of microcracks. As creep continues, the microcracks continue to expand until creep fracture occurs, which is the damage and fracture mechanism of the alloy at the later stage of creep at high temperature.

    参考文献
    相似文献
    引证文献
引用本文

李永湘,田宁,张萍,张顺科,闫化锦,赵国旗.DZ125镍基高温合金高温蠕变期间的组织演化及变形机制[J].稀有金属材料与工程,2025,54(7):1733~1740.[Li Yongxiang, Tian Ning, Zhang Ping, Zhang Shunke, Yan Huajin, Zhao Guoqi. Microstructure Evolution and Deformation Mechanism of DZ125 Ni-based Superalloy During High-Temperature Creep[J]. Rare Metal Materials and Engineering,2025,54(7):1733~1740.]
DOI:10.12442/j. issn.1002-185X.20240279

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-12
  • 最后修改日期:2024-09-09
  • 录用日期:2024-09-12
  • 在线发布日期: 2025-07-01
  • 出版日期: 2025-06-23