+高级检索
电子束定向能量沉积Fe-Mo功能梯度材料的微观组织及性能
作者:
作者单位:

1.南京航空航天大学 材料科学与技术学院,江苏 南京 211100;2.面向苛刻环境的材料制备与防护技术工业和信息化部重点实验室,江苏 南京 210016;3.乌克兰国立技术大学 伊戈尔·西科尔斯基基辅理工学院,乌克兰 基辅 03056

作者简介:

通讯作者:

中图分类号:

基金项目:

National Natural Science Foundation of China, China (Grant No. 51975286)


Microstructure and Properties of Fe-Mo Functionally Graded Materials Fabricated by Electron Beam-Directional Energy Deposition
Author:
Affiliation:

1.College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China;2.Key Laboratory of Materials Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, Nanjing 210016, China;3.Igor Sikorsky Kyiv Polytechnic Institute, National Technical University of Ukraine, Kyiv 03056, Ukraine

Fund Project:

National Natural Science Foundation of China (51975286)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用电子束定向能量沉积(EB-DED)技术,制备了沿成分梯度方向从100% 304不锈钢到100% Mo的不同成分变化率的Fe-Mo功能梯度材料(FGMs),包括成分突变100%、成分变化率10%和成分变化率30% 3种试样。结果表明,成分变化率显著影响试样的显微组织和力学性能。在成分突变的试样中,304不锈钢和Mo之间成分急剧变化导致了两种材料界面附近的组织形态和硬度有很大的差异。而随梯度层数的增加,成分沿沉积高度方向连续变化,显微组织形貌呈现出从304不锈钢到Mo的平滑过渡,由柱状晶逐渐转变为树枝晶。Fe、Mo等主要元素沿梯度方向呈线性转变,沉积层间扩散充分,冶金结合良好。成分梯度变化越小,沿沉积方向的显微硬度值越大。当成分梯度为10%时,梯度层显示出更高的硬度(最高达940 HV)和优异的抗表面磨损性能,且试样整体压缩性能较好,顶部区域的压缩断裂应力达到750.05±14 MPa。

    Abstract:

    Fe-Mo functionally graded materials (FGMs) with different composition-change rates from 100% 304 stainless steel to 100% Mo along the composition gradient direction were prepared by electron beam-directed energy deposition (EB-DED) technique, including three samples with composition mutation of 100%, composition change rate of 10% and 30%. Results show that the composition-change rate significantly affects the microstructure and mechanical properties of the samples. In the sample with abrupt change of composition, the sharp shift in composition between 304 stainless steel and Mo leads to a great difference in the microstructure and hardness near the interface between the two materials. With the increase in the number of gradient layers, the composition changes continuously along the direction of deposition height, and the microstructure morphology shows a smooth transition from 304 stainless steel to Mo, which is gradually transformed from columnar crystal to dendritic crystal. Elements Fe, Mo, and other major elements transform linearly along the gradient direction, with sufficient interlayer diffusion between the deposited layers, leading to good metallurgical bonding. The smaller the change in composition gradient, the greater the microhardness value along the deposition direction. When the composition gradient is 10%, the gradient layer exhibits higher hardness (940 HV) and excellent resistance to surface abrasion, and the overall compressive properties of the samples are better, with the compressive fracture stress in the top region reaching 750.05±14 MPa.

    参考文献
    相似文献
    引证文献
引用本文

李丹妮,姚正军,姚孟欣,张叔贤,Oleksandr Moliar, Tetiana Soloviova, Iryna Trosnikova, Petro Loboda,张莎莎.电子束定向能量沉积Fe-Mo功能梯度材料的微观组织及性能[J].稀有金属材料与工程,2025,54(3):554~568.[lidanni, Yaozhengjun, Yaomengxin, Zhangshuxian, Oleksandr Moliar, Tetiana Soloviova, Iryna Trosnikova, Petro Loboda, Zhangshasha. Microstructure and Properties of Fe-Mo Functionally Graded Materials Fabricated by Electron Beam-Directional Energy Deposition[J]. Rare Metal Materials and Engineering,2025,54(3):554~568.]
DOI:10.12442/j. issn.1002-185X.20240549

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-23
  • 最后修改日期:2024-09-06
  • 录用日期:2024-09-23
  • 在线发布日期: 2025-03-25
  • 出版日期: 2025-03-25