+高级检索
金属铍静态再结晶动力学
DOI:
作者:
作者单位:

1.北方民族大学 材料科学与工程学院 粉体材料与特种陶瓷省部共建重点实验室 工业废弃物循环利用及先进材料国际科技合作基地;2.西北稀有金属材料研究院宁夏有限公司;3.宁夏大学 宁夏光伏材料重点实验室

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助(51874246);


Static recrystallization kinetics of the metal beryllium
Author:
Affiliation:

1.School of Materials Science and Engineering,North Minzu University,Key Laboratory of Powder Material Advanced Ceramics,International Scientific Technological Cooperation Base of Industrial Waste Recycling and Advanced Materials;2.State Key Laboratory for Special Rare Metal Materials,Northwest Rare Metal Materials Research Institute Ningxia Co,Ltd;3.Key Laboratory of NingXia for Photovoltaic materials,Ningxia University

Fund Project:

The National Natural Science Foundation of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用Instron5582材料试验机进行等温压缩试验和硬度法测量再结晶百分数,研究金属铍不同应变温度(250 ℃- 450 ℃)、应变速率(10-1 s-1-10-4 s-1)、应变量(16%-92%)压缩后,在680℃-880℃退火静态再结晶组织演化及动力学。结果表明:降低应变温度提高应变速率可以促进铍再结晶进行;增加应变量,铍再结晶晶粒细化,再结晶速率也加快,但应变量增加到60%以上,增加应变量对提高铍再结晶速率的影响变小;提高退火温度,铍再结晶速率明显加快,特别是退火温度从750 ℃提高到780 ℃时,铍再结晶速率急剧增加。880 ℃时,铍完成再结晶时间仅需约5 min。铍680 ℃-750 ℃的静态再结晶激活能为396.56 kJ/mol,而780 ℃-880 ℃时仅为72.93 kJ/mol。建立具有修正Avirami指数n的铍静态再结晶动力学模型,模型计算值与实验值符合较好,能够较准确预测铍低温形变(250 ℃-450 ℃)后的静态再结晶百分数,满足工程应用。

    Abstract:

    The microstructure evolution and the kinetics of static recrystallization have been investigated in beryllium during annealing at 680 ℃-880 ℃ through the implementation of the isothermal compression test and the measurement of the recrystallized fraction by hardness. The beryllium was subjected to compression on an Instron 5582 testing machine under varying strain temperatures (250 ℃-450 ℃), strain rates (10-1 s-1 to 10-4 s-1), and true strains (16%-92%). The results show that decreasing the strain temperature and increasing the strain rate promotes the progress of beryllium recrystallization. As the strain is increased, the beryllium recrystallized grains exhibit refinement, and the recrystallization rate is accelerated. However, the effect of increasing the strain on improving the recrystallization rate of beryllium diminished when the strain was increased to more than 60%. Increasing the annealing temperature, the recrystallization rate of beryllium was significantly accelerated. In particular, when the annealing temperature is elevated from 750 ℃ to 780 ℃, the recrystallization rate of beryllium enhances dramatically. At 880 ℃, the time for beryllium to complete recrystallization is reduced to approximately five minutes. The static recrystallization activation energy of beryllium is 396.56 kJ/mol at 680 ℃-750 ℃, while it is only 72.93 kJ/mol at 780 ℃-880 ℃. A static recrystallization kinetic model of beryllium with a modified Avirami component n is constructed. The calculated values of the model are in good agreement with the experimental values, indicating that the model is capable of predicting the static recrystallized fraction of beryllium deformed at low temperatures (250 ℃-450 ℃) and meets the requirements of engineering applications.

    参考文献
    相似文献
    引证文献
引用本文

许德美,李美岁,李志年,叶树鹏,何力军,李峰.金属铍静态再结晶动力学[J].稀有金属材料与工程,,().[Xu Demei, Li Meisui, Li Zhinian, Ye Shupeng, He Lijun, Li Feng. Static recrystallization kinetics of the metal beryllium[J]. Rare Metal Materials and Engineering,,().]
DOI:[doi]

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-25
  • 最后修改日期:2024-12-12
  • 录用日期:2025-01-03
  • 在线发布日期:
  • 出版日期: